mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 10:54:36 +00:00
metal : rewrite to fit new backend interface correctly (WIP)
This commit is contained in:
parent
cb82adadb8
commit
d45c1631bc
@ -94,7 +94,6 @@ struct ggml_backend_buffer * ggml_allocator_simple_init(void * data, size_t size
|
||||
*allocator = (struct ggml_backend_buffer){
|
||||
/* .interface = */ ggml_allocator_simple_interface,
|
||||
/* .context = */ ctx,
|
||||
/* .backend_size = */ 0,
|
||||
/* .backend_data = */ NULL,
|
||||
};
|
||||
return allocator;
|
||||
@ -146,6 +145,9 @@ void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst
|
||||
return;
|
||||
}
|
||||
|
||||
//printf("src->data = %p, src->extra = %p\n", src->data, src->extra);
|
||||
//printf("dst->data = %p, dst->extra = %p\n", dst->data, dst->extra);
|
||||
|
||||
if (dst->backend->interface.cpy_tensor_from != NULL) {
|
||||
dst->backend->interface.cpy_tensor_from(dst->backend->context, src, dst);
|
||||
} else if (src->backend->interface.cpy_tensor_to != NULL) {
|
||||
@ -193,7 +195,6 @@ static struct ggml_backend_buffer * ggml_backend_cpu_alloc_buffer(struct ggml_ba
|
||||
|
||||
struct ggml_backend_buffer * buffer = ggml_allocator_simple_init(data, size, TENSOR_ALIGNMENT);
|
||||
buffer->interface.free_data = ggml_backend_cpu_free_buffer;
|
||||
buffer->backend_size = size;
|
||||
buffer->backend_data = data;
|
||||
|
||||
return buffer;
|
||||
|
@ -27,7 +27,6 @@ extern "C" {
|
||||
struct ggml_backend_buffer {
|
||||
struct ggml_backend_buffer_interface interface;
|
||||
ggml_buffer_context_t context;
|
||||
size_t backend_size;
|
||||
void * backend_data;
|
||||
};
|
||||
|
||||
|
16
ggml-metal.h
16
ggml-metal.h
@ -19,14 +19,9 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
// max memory buffers that can be mapped to the device
|
||||
#define GGML_METAL_MAX_BUFFERS 16
|
||||
|
||||
//struct ggml_tensor;
|
||||
//struct ggml_cgraph;
|
||||
|
||||
@ -34,16 +29,9 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct ggml_backend * ggml_backend_metal_init(struct ggml_backend * backend_cpu);
|
||||
|
||||
// TODO: temporary - move to backend interface
|
||||
bool ggml_backend_metal_map_buffer(
|
||||
struct ggml_backend * backend,
|
||||
const char * name,
|
||||
void * data,
|
||||
size_t size,
|
||||
size_t max_size);
|
||||
struct ggml_backend;
|
||||
|
||||
struct ggml_backend * ggml_backend_metal_init(void);
|
||||
|
||||
//struct ggml_metal_context;
|
||||
//
|
||||
|
370
ggml-metal.m
370
ggml-metal.m
@ -12,18 +12,16 @@
|
||||
#else
|
||||
#define metal_printf(...) fprintf(stderr, __VA_ARGS__)
|
||||
#endif
|
||||
//#define metal_printf(...) fprintf(stderr, __VA_ARGS__)
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
|
||||
struct ggml_metal_buffer {
|
||||
const char * name;
|
||||
|
||||
void * data;
|
||||
size_t size;
|
||||
|
||||
id<MTLBuffer> metal;
|
||||
struct ggml_metal_buffer_wrapper {
|
||||
id<MTLBuffer> buffer;
|
||||
};
|
||||
|
||||
static void * g_ptr_base = (void *)0x1000;
|
||||
|
||||
struct ggml_metal_context {
|
||||
int n_cb;
|
||||
|
||||
@ -33,9 +31,6 @@ struct ggml_metal_context {
|
||||
id<MTLCommandQueue> queue;
|
||||
id<MTLLibrary> library;
|
||||
|
||||
int n_buffers;
|
||||
struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
|
||||
|
||||
// custom kernels
|
||||
#define GGML_METAL_DECL_KERNEL(name) \
|
||||
id<MTLFunction> function_##name; \
|
||||
@ -96,7 +91,6 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
ctx->n_cb = n_cb;
|
||||
ctx->device = MTLCreateSystemDefaultDevice();
|
||||
ctx->queue = [ctx->device newCommandQueue];
|
||||
ctx->n_buffers = 0;
|
||||
|
||||
// determine if we can use MPS
|
||||
if (MPSSupportsMTLDevice(ctx->device)) {
|
||||
@ -205,9 +199,6 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
|
||||
void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||
fprintf(stderr, "%s: deallocating\n", __func__);
|
||||
for (int i = 0; i < ctx->n_buffers; ++i) {
|
||||
[ctx->buffers[i].metal release];
|
||||
}
|
||||
free(ctx);
|
||||
}
|
||||
|
||||
@ -215,143 +206,29 @@ void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
|
||||
ctx->n_cb = n_cb;
|
||||
}
|
||||
|
||||
// finds the Metal buffer that contains the tensor data on the GPU device
|
||||
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
|
||||
// Metal buffer based on the host memory pointer
|
||||
//
|
||||
static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
|
||||
//fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
|
||||
|
||||
const int64_t tsize = ggml_nbytes(t);
|
||||
|
||||
// find the view that contains the tensor fully
|
||||
for (int i = 0; i < ctx->n_buffers; ++i) {
|
||||
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
|
||||
|
||||
if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
|
||||
*offs = (size_t) ioffs;
|
||||
|
||||
//fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
|
||||
|
||||
return ctx->buffers[i].metal;
|
||||
}
|
||||
static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_tensor * tensor, size_t * offs) {
|
||||
if (tensor == nil) {
|
||||
return nil;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: error: buffer is nil for tensor '%s'\n", __func__, t->name);
|
||||
|
||||
return nil;
|
||||
}
|
||||
|
||||
// TODO: rename to ggml_metal_map_buffer
|
||||
bool ggml_metal_add_buffer(
|
||||
struct ggml_metal_context * ctx,
|
||||
const char * name,
|
||||
void * data,
|
||||
size_t size,
|
||||
size_t max_size) {
|
||||
if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
|
||||
fprintf(stderr, "%s: too many buffers\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (data) {
|
||||
// verify that the buffer does not overlap with any of the existing buffers
|
||||
for (int i = 0; i < ctx->n_buffers; ++i) {
|
||||
const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data;
|
||||
|
||||
if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
|
||||
fprintf(stderr, "%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
const size_t size_page = getpagesize();
|
||||
|
||||
size_t size_aligned = size;
|
||||
if ((size_aligned % size_page) != 0) {
|
||||
size_aligned += (size_page - (size_aligned % size_page));
|
||||
}
|
||||
|
||||
// the buffer fits into the max buffer size allowed by the device
|
||||
if (size_aligned <= ctx->device.maxBufferLength) {
|
||||
ctx->buffers[ctx->n_buffers].name = name;
|
||||
ctx->buffers[ctx->n_buffers].data = data;
|
||||
ctx->buffers[ctx->n_buffers].size = size;
|
||||
|
||||
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
||||
|
||||
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
||||
fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
|
||||
return false;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
|
||||
|
||||
++ctx->n_buffers;
|
||||
} else {
|
||||
// this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
|
||||
// one of the views
|
||||
const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
|
||||
const size_t size_step = ctx->device.maxBufferLength - size_ovlp;
|
||||
const size_t size_view = ctx->device.maxBufferLength;
|
||||
|
||||
for (size_t i = 0; i < size; i += size_step) {
|
||||
const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
|
||||
|
||||
ctx->buffers[ctx->n_buffers].name = name;
|
||||
ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
|
||||
ctx->buffers[ctx->n_buffers].size = size_step_aligned;
|
||||
|
||||
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
||||
|
||||
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
||||
fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
|
||||
return false;
|
||||
switch (tensor->op) {
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_PERMUTE:
|
||||
{
|
||||
if (tensor->op == GGML_OP_VIEW) {
|
||||
//printf("view offs = %zu\n", *(size_t *)tensor->op_params);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
|
||||
if (i + size_step < size) {
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
++ctx->n_buffers;
|
||||
return ggml_metal_get_buffer(tensor->src[0], offs);
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stderr, ", (%8.2f / %8.2f)",
|
||||
ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
|
||||
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||
|
||||
if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
|
||||
fprintf(stderr, ", warning: current allocated size is greater than the recommended max working set size\n");
|
||||
} else {
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
default: {}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void ggml_metal_set_tensor(
|
||||
struct ggml_metal_context * ctx,
|
||||
struct ggml_tensor * t) {
|
||||
metal_printf("%s: set input for tensor '%s'\n", __func__, t->name);
|
||||
|
||||
size_t offs;
|
||||
id<MTLBuffer> id_dst = ggml_metal_get_buffer(ctx, t, &offs);
|
||||
|
||||
memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t));
|
||||
}
|
||||
|
||||
void ggml_metal_get_tensor(
|
||||
struct ggml_metal_context * ctx,
|
||||
struct ggml_tensor * t) {
|
||||
metal_printf("%s: extract results for tensor '%s'\n", __func__, t->name);
|
||||
|
||||
size_t offs;
|
||||
id<MTLBuffer> id_src = ggml_metal_get_buffer(ctx, t, &offs);
|
||||
|
||||
memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
|
||||
*offs = (size_t) tensor->data - (size_t) g_ptr_base;
|
||||
//printf("%s: offs = %zu, %p, op = %s\n", __func__, *offs, tensor->extra, ggml_op_name(tensor->op));
|
||||
return ((struct ggml_metal_buffer_wrapper *) tensor->extra)->buffer;
|
||||
}
|
||||
|
||||
void ggml_metal_graph_compute(
|
||||
@ -432,23 +309,35 @@ void ggml_metal_graph_compute(
|
||||
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
|
||||
const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
|
||||
|
||||
id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
|
||||
id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
|
||||
id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil;
|
||||
switch (dst->op) {
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_PERMUTE:
|
||||
{
|
||||
continue;
|
||||
} break;
|
||||
default: break;
|
||||
}
|
||||
|
||||
//metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op));
|
||||
//if (src0) {
|
||||
// metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
|
||||
// ggml_is_contiguous(src0), src0->name);
|
||||
//}
|
||||
//if (src1) {
|
||||
// metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
|
||||
// ggml_is_contiguous(src1), src1->name);
|
||||
//}
|
||||
//if (dst) {
|
||||
// metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
|
||||
// dst->name);
|
||||
//}
|
||||
id<MTLBuffer> id_src0 = ggml_metal_get_buffer(src0, &offs_src0);
|
||||
id<MTLBuffer> id_src1 = ggml_metal_get_buffer(src1, &offs_src1);
|
||||
id<MTLBuffer> id_dst = ggml_metal_get_buffer(dst, &offs_dst);
|
||||
|
||||
metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op));
|
||||
if (src0) {
|
||||
metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
|
||||
ggml_is_contiguous(src0), src0->name);
|
||||
}
|
||||
if (src1) {
|
||||
metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
|
||||
ggml_is_contiguous(src1), src1->name);
|
||||
}
|
||||
if (dst) {
|
||||
metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
|
||||
dst->name);
|
||||
}
|
||||
|
||||
switch (dst->op) {
|
||||
case GGML_OP_NONE:
|
||||
@ -501,7 +390,9 @@ void ggml_metal_graph_compute(
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
}
|
||||
|
||||
const float scale = *(const float *) src1->data;
|
||||
//const float scale = *(const float *) src1->data;
|
||||
const float scale = ((float *)((char *)[((struct ggml_metal_buffer_wrapper *)(src1->extra))->buffer contents] + (size_t) src1->data - (size_t)g_ptr_base))[0];
|
||||
//printf("scale: %f, src1->data: %p, src1->extra: %p, src1->extra->buffer: %p\n", scale, src1->data, src1->extra, ((struct ggml_metal_buffer_wrapper *)(src1->extra))->buffer);
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_scale];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
@ -578,7 +469,8 @@ void ggml_metal_graph_compute(
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
}
|
||||
|
||||
const int n_past = ((int32_t *)(src1->data))[0];
|
||||
//const int n_past = ((int32_t *)(src1->data))[0];
|
||||
const int n_past = ((int32_t *)(dst->op_params))[0];
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
@ -740,6 +632,10 @@ void ggml_metal_graph_compute(
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
|
||||
|
||||
//printf("id_src0 %p, offs_src0 %zu\n", id_src0, offs_src0);
|
||||
//printf("id_src1 %p, offs_src1 %zu\n", id_src1, offs_src1);
|
||||
//printf("id_dst %p, offs_dst %zu\n", id_dst, offs_dst);
|
||||
|
||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
@ -877,11 +773,10 @@ void ggml_metal_graph_compute(
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
}
|
||||
|
||||
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||
const int mode = ((int32_t *) dst->op_params)[2];
|
||||
|
||||
const int n_past = ((int32_t *)(dst->op_params))[0];
|
||||
|
||||
float freq_base;
|
||||
float freq_scale;
|
||||
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
|
||||
@ -994,61 +889,140 @@ void ggml_metal_graph_compute(
|
||||
}
|
||||
}
|
||||
|
||||
bool ggml_backend_metal_map_buffer(
|
||||
struct ggml_backend * backend,
|
||||
const char * name,
|
||||
void * data,
|
||||
size_t size,
|
||||
size_t max_size) {
|
||||
return ggml_metal_add_buffer(backend->context, name, data, size, max_size);
|
||||
}
|
||||
|
||||
static const char * ggml_backend_metal_name(struct ggml_backend * ctx) {
|
||||
return "Metal";
|
||||
|
||||
UNUSED(ctx);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_free(struct ggml_backend * backend) {
|
||||
struct ggml_metal_context * ctx_metal = (struct ggml_metal_context *)backend->context;
|
||||
ggml_metal_free(ctx_metal);
|
||||
free(backend);
|
||||
}
|
||||
|
||||
static const size_t TENSOR_ALIGNMENT = 128;
|
||||
|
||||
static void ggml_backend_metal_init_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
|
||||
tensor->extra = alloc->backend_data;
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_free_data(struct ggml_backend_buffer * alloc) {
|
||||
struct ggml_metal_buffer_wrapper * wrapper = (struct ggml_metal_buffer_wrapper *)alloc->backend_data;
|
||||
[wrapper->buffer release];
|
||||
free(wrapper);
|
||||
}
|
||||
|
||||
static struct ggml_backend_buffer * ggml_backend_metal_alloc_buffer(struct ggml_backend * backend, size_t size) {
|
||||
struct ggml_metal_context * ctx_metal = (struct ggml_metal_context *)backend->context;
|
||||
|
||||
struct ggml_metal_buffer_wrapper * wrapper = malloc(sizeof(struct ggml_metal_buffer_wrapper));
|
||||
wrapper->buffer = [ctx_metal->device newBufferWithLength:size options:MTLResourceStorageModeShared];
|
||||
if (wrapper->buffer == nil) {
|
||||
fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
//printf("XXXXXXXXXXXXXXX ALOC: %p %p %p size = %zu\n", (void * )wrapper, (void *)&wrapper->buffer, (void *)[wrapper->buffer contents], size);
|
||||
|
||||
struct ggml_backend_buffer * buffer = ggml_allocator_simple_init(g_ptr_base, size, TENSOR_ALIGNMENT);
|
||||
buffer->interface.init_tensor = ggml_backend_metal_init_tensor;
|
||||
buffer->interface.free_data = ggml_backend_metal_free_data;
|
||||
buffer->backend_data = wrapper;
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_set_tensor_async(struct ggml_backend * backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||
GGML_ASSERT(tensor->extra != nil && "tensor not allocated");
|
||||
|
||||
struct ggml_metal_buffer_wrapper * wrapper = (struct ggml_metal_buffer_wrapper *)tensor->extra;
|
||||
char * contents = (char *)[wrapper->buffer contents];
|
||||
|
||||
const size_t t_data = (size_t) tensor->data - (size_t) g_ptr_base;
|
||||
|
||||
//printf("XXXXXXXXXXXXXXX SET : %p %p %p offset = %zu\n", (void *)(tensor->data), (void *)&wrapper->buffer, (void *)contents, offset);
|
||||
|
||||
memcpy((char *)contents + t_data + offset, data, size);
|
||||
|
||||
//memcpy((char *)tensor->data, data, size);
|
||||
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_get_tensor_async(struct ggml_backend * backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||
//printf("XXXXXXXXXXXXXXX GET : %d %p, backend = %s\n", (void *)(tensor->data), (void *)tensor->extra, tensor->backend->interface.get_name(tensor->backend));
|
||||
GGML_ASSERT(tensor->extra != nil && "tensor not allocated");
|
||||
|
||||
struct ggml_metal_buffer_wrapper * wrapper = (struct ggml_metal_buffer_wrapper *)tensor->extra;
|
||||
const char * contents = (const char *)[wrapper->buffer contents];
|
||||
|
||||
const size_t t_data = (size_t) tensor->data - (size_t) g_ptr_base;
|
||||
|
||||
//printf("XXXXXXXXXXXXXXX GET : %p %p %p offset = %zu\n", (void *)(tensor->data), (void *)&wrapper->buffer, (void *)contents, offset);
|
||||
|
||||
memcpy(data, (const char *)contents + t_data + offset, size);
|
||||
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_synchronize(struct ggml_backend * backend) {
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static ggml_graph_plan_t ggml_backend_metal_graph_plan_create(struct ggml_backend * backend, struct ggml_cgraph * cgraph) {
|
||||
GGML_ASSERT(false);
|
||||
|
||||
return nil;
|
||||
|
||||
UNUSED(backend);
|
||||
UNUSED(cgraph);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_graph_plan_free(struct ggml_backend * backend, ggml_graph_plan_t plan) {
|
||||
GGML_ASSERT(false);
|
||||
|
||||
UNUSED(backend);
|
||||
UNUSED(plan);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_graph_plan_compute(struct ggml_backend * backend, ggml_graph_plan_t plan) {
|
||||
GGML_ASSERT(false);
|
||||
|
||||
UNUSED(backend);
|
||||
UNUSED(plan);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_graph_compute(struct ggml_backend * backend, struct ggml_cgraph * cgraph) {
|
||||
ggml_metal_graph_compute(backend->context, cgraph);
|
||||
}
|
||||
|
||||
static struct ggml_backend_interface metal_backend_interface = {
|
||||
/* .get_name = */ ggml_backend_metal_name,
|
||||
/* .free = */ NULL, //ggml_backend_metal_alloc_buffer,
|
||||
/* .alloc_buffer = */ NULL, //ggml_backend_metal_free_buffer,
|
||||
/* .set_tensor_async = */ NULL, //ggml_backend_metal_reset_buffer,
|
||||
/* .get_tensor_async = */ NULL, //ggml_backend_metal_alloc_tensor,
|
||||
/* .synchronize = */ NULL, //ggml_backend_metal_set_tensor_async,
|
||||
/* .cpy_tensor_from = */ NULL, //ggml_backend_metal_get_tensor_async,
|
||||
/* .cpy_tensor_to = */ NULL, //ggml_backend_metal_synchronize,
|
||||
/* .graph_plan_create = */ NULL, //nullptr,
|
||||
/* .graph_plan_free = */ NULL, //nullptr,
|
||||
/* .graph_plan_compute = */ NULL, //ggml_backend_metal_graph_plan_create,
|
||||
/* .free = */ ggml_backend_metal_free,
|
||||
/* .alloc_buffer = */ ggml_backend_metal_alloc_buffer,
|
||||
/* .set_tensor_async = */ ggml_backend_metal_set_tensor_async,
|
||||
/* .get_tensor_async = */ ggml_backend_metal_get_tensor_async,
|
||||
/* .synchronize = */ ggml_backend_metal_synchronize,
|
||||
/* .cpy_tensor_from = */ nil, //ggml_backend_metal_get_tensor_async,
|
||||
/* .cpy_tensor_to = */ nil, //ggml_backend_metal_synchronize,
|
||||
/* .graph_plan_create = */ ggml_backend_metal_graph_plan_create,
|
||||
/* .graph_plan_free = */ ggml_backend_metal_graph_plan_free,
|
||||
/* .graph_plan_compute = */ ggml_backend_metal_graph_plan_compute,
|
||||
/* .graph_compute = */ ggml_backend_metal_graph_compute,
|
||||
};
|
||||
|
||||
struct ggml_backend * ggml_backend_metal_init(struct ggml_backend * backend_cpu) {
|
||||
struct ggml_metal_context * ctx = ggml_metal_init(8);
|
||||
struct ggml_backend * ggml_backend_metal_init(void) {
|
||||
struct ggml_metal_context * ctx = ggml_metal_init(1);
|
||||
|
||||
struct ggml_backend * backend_metal = malloc(sizeof(struct ggml_backend));
|
||||
*backend_metal = (struct ggml_backend){
|
||||
/* .interface = */ metal_backend_interface,
|
||||
/* .context = */ ctx,
|
||||
/* .is_ram_shared = */ true,
|
||||
/* .is_ram_shared = */ false,
|
||||
};
|
||||
|
||||
// reuses CPU calls for now
|
||||
backend_metal->interface.free = backend_cpu->interface.free;
|
||||
backend_metal->interface.alloc_buffer = backend_cpu->interface.alloc_buffer;
|
||||
backend_metal->interface.set_tensor_async = backend_cpu->interface.set_tensor_async;
|
||||
backend_metal->interface.get_tensor_async = backend_cpu->interface.get_tensor_async;
|
||||
backend_metal->interface.synchronize = backend_cpu->interface.synchronize;
|
||||
backend_metal->interface.cpy_tensor_from = backend_cpu->interface.cpy_tensor_from;
|
||||
backend_metal->interface.cpy_tensor_to = backend_cpu->interface.cpy_tensor_to;
|
||||
backend_metal->interface.graph_plan_create = backend_cpu->interface.graph_plan_create;
|
||||
backend_metal->interface.graph_plan_free = backend_cpu->interface.graph_plan_free;
|
||||
backend_metal->interface.graph_plan_compute = backend_cpu->interface.graph_plan_compute;
|
||||
|
||||
return backend_metal;
|
||||
}
|
||||
|
12
ggml.c
12
ggml.c
@ -4927,6 +4927,7 @@ struct ggml_tensor * ggml_view_tensor(
|
||||
result->nb[1] = src->nb[1];
|
||||
result->nb[2] = src->nb[2];
|
||||
result->nb[3] = src->nb[3];
|
||||
result->extra = src->extra;
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -6262,6 +6263,7 @@ struct ggml_tensor * ggml_reshape(
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = NULL;
|
||||
result->extra = a->extra;
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -6287,6 +6289,7 @@ struct ggml_tensor * ggml_reshape_1d(
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = NULL;
|
||||
result->extra = a->extra;
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -6313,6 +6316,7 @@ struct ggml_tensor * ggml_reshape_2d(
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = NULL;
|
||||
result->extra = a->extra;
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -6340,6 +6344,7 @@ struct ggml_tensor * ggml_reshape_3d(
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = NULL;
|
||||
result->extra = a->extra;
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -6369,6 +6374,7 @@ struct ggml_tensor * ggml_reshape_4d(
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = NULL;
|
||||
result->extra = a->extra;
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -6396,6 +6402,7 @@ struct ggml_tensor * ggml_view_1d(
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = NULL;
|
||||
result->extra = a->extra;
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -6431,6 +6438,7 @@ struct ggml_tensor * ggml_view_2d(
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = NULL;
|
||||
result->extra = a->extra;
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -6468,6 +6476,7 @@ struct ggml_tensor * ggml_view_3d(
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = NULL;
|
||||
result->extra = a->extra;
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -6507,6 +6516,7 @@ struct ggml_tensor * ggml_view_4d(
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = NULL;
|
||||
result->extra = a->extra;
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -6568,6 +6578,7 @@ struct ggml_tensor * ggml_permute(
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = NULL;
|
||||
result->extra = a->extra;
|
||||
|
||||
int32_t params[] = { axis0, axis1, axis2, axis3 };
|
||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
||||
@ -6599,6 +6610,7 @@ struct ggml_tensor * ggml_transpose(
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = NULL;
|
||||
result->extra = a->extra;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
77
llama.cpp
77
llama.cpp
@ -226,7 +226,7 @@ struct llama_model {
|
||||
|
||||
// backends
|
||||
ggml_backend * backend_cpu = NULL;
|
||||
ggml_buffer * buf_cpu = NULL;
|
||||
ggml_buffer * buf_cpu = NULL;
|
||||
ggml_context * ctx_cpu = NULL;
|
||||
#ifdef GGML_USE_CUDA
|
||||
ggml_backend * backend_cuda = NULL;
|
||||
@ -234,8 +234,8 @@ struct llama_model {
|
||||
ggml_context * ctx_cuda = NULL;
|
||||
#endif
|
||||
#ifdef GGML_USE_METAL
|
||||
ggml_backend * backend_metal;
|
||||
ggml_buffer * buf_metal;
|
||||
ggml_backend * backend_metal = NULL;
|
||||
ggml_buffer * buf_metal = NULL;
|
||||
ggml_context * ctx_metal = NULL;
|
||||
#endif
|
||||
|
||||
@ -991,7 +991,7 @@ static void llama_model_load_internal(
|
||||
#endif
|
||||
#ifdef GGML_USE_METAL
|
||||
if (n_gpu_layers > 0) {
|
||||
model.backend_metal = ggml_backend_metal_init(backend_cpu);
|
||||
model.backend_metal = ggml_backend_metal_init();
|
||||
backend_gpu = model.backend_metal;
|
||||
}
|
||||
#endif
|
||||
@ -1081,15 +1081,13 @@ static void llama_model_load_internal(
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
if (n_gpu_layers > 0) {
|
||||
// the metal context is actually a CPU context because we have unified memory
|
||||
const size_t ctx_size = ctx_sizes[model.backend_metal];
|
||||
const size_t n_tensors = ml->tensors_map.tensors.size();
|
||||
|
||||
model.buf_metal = ggml_buffer_alloc(model.backend_metal, ctx_size, n_tensors);
|
||||
|
||||
struct ggml_init_params params = ggml_init_params_default();
|
||||
params.buffer = model.buf_metal;
|
||||
params.no_alloc = ml->use_mmap;
|
||||
params.buffer = model.buf_metal;
|
||||
|
||||
model.ctx_metal = ggml_init(params);
|
||||
if (!model.ctx_metal) {
|
||||
@ -1372,10 +1370,10 @@ static ggml_graph_splits llama_build_graph(
|
||||
struct ggml_tensor * tmpv = ggml_mul_mat(ctx_l, model.layers[il].wv, cur);
|
||||
ggml_set_name(tmpv, "tmpv");
|
||||
|
||||
struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx_l, ggml_reshape_3d(ctx_l, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0);
|
||||
struct ggml_tensor * Kcur = ggml_rope(ctx_l, ggml_reshape_3d(ctx_l, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
|
||||
ggml_set_name(Kcur, "Kcur");
|
||||
|
||||
struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx_l, ggml_reshape_3d(ctx_l, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0);
|
||||
struct ggml_tensor * Qcur = ggml_rope(ctx_l, ggml_reshape_3d(ctx_l, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
|
||||
ggml_set_name(Qcur, "Qcur");
|
||||
|
||||
struct ggml_tensor * Vcur = ggml_transpose(ctx_l, ggml_reshape_2d(ctx_l, tmpv, n_embd, N));
|
||||
@ -1428,15 +1426,15 @@ static ggml_graph_splits llama_build_graph(
|
||||
|
||||
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
||||
// KQ_scaled shape [n_past + N, N, n_head, 1]
|
||||
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx_kv, KQ, KQ_scale);
|
||||
struct ggml_tensor * KQ_scaled = ggml_scale(ctx_kv, KQ, KQ_scale);
|
||||
ggml_set_name(KQ_scaled, "KQ_scaled");
|
||||
|
||||
// KQ_masked = mask_past(KQ_scaled)
|
||||
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx_kv, KQ_scaled, n_past);
|
||||
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx_kv, KQ_scaled, n_past);
|
||||
ggml_set_name(KQ_masked, "KQ_masked");
|
||||
|
||||
// KQ = soft_max(KQ_masked)
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx_kv, KQ_masked);
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx_kv, KQ_masked);
|
||||
ggml_set_name(KQ_soft_max, "KQ_soft_max");
|
||||
|
||||
// split cached V into n_head heads
|
||||
@ -2717,6 +2715,12 @@ struct llama_context * llama_new_context_with_model(
|
||||
} else {
|
||||
ctx->backend_kv = model->backend_cpu;
|
||||
}
|
||||
#elif GGML_USE_METAL
|
||||
if ((uint32_t)params.n_gpu_layers >= model->hparams.n_layer/2 && !params.low_vram) {
|
||||
ctx->backend_kv = model->backend_metal;
|
||||
} else {
|
||||
ctx->backend_kv = model->backend_cpu;
|
||||
}
|
||||
#else
|
||||
ctx->backend_kv = model->backend_cpu;
|
||||
#endif
|
||||
@ -2817,49 +2821,6 @@ struct llama_context * llama_new_context_with_model(
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
if (params.n_gpu_layers > 0) {
|
||||
void * data_ptr = NULL;
|
||||
size_t data_size = 0;
|
||||
|
||||
if (params.use_mmap) {
|
||||
data_ptr = ctx->model.mapping->addr;
|
||||
data_size = ctx->model.mapping->size;
|
||||
} else {
|
||||
data_ptr = ggml_get_mem_buffer(ctx->model.ctx_metal);
|
||||
data_size = ggml_get_mem_size (ctx->model.ctx_metal);
|
||||
}
|
||||
|
||||
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx_metal);
|
||||
|
||||
printf("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
|
||||
|
||||
#define LLAMA_METAL_CHECK_BUF(result) \
|
||||
if (!(result)) { \
|
||||
fprintf(stderr, "%s: failed to add buffer\n", __func__); \
|
||||
llama_free(ctx); \
|
||||
return NULL; \
|
||||
}
|
||||
|
||||
LLAMA_METAL_CHECK_BUF(ggml_backend_metal_map_buffer(ctx->model.backend_metal, "data", data_ptr, data_size, max_size));
|
||||
|
||||
struct ggml_backend_buffer * buf_compute = ctx->buf_compute_metal->backend_buffer;
|
||||
struct ggml_backend_buffer * buf_kv = ctx->kv_self.buf->backend_buffer;
|
||||
struct ggml_backend_buffer * buf_input = ctx->buf_input->backend_buffer;
|
||||
struct ggml_backend_buffer * buf_output = ctx->buf_output->backend_buffer;
|
||||
|
||||
LLAMA_METAL_CHECK_BUF(ggml_backend_metal_map_buffer(ctx->model.backend_metal, "eval", buf_compute->backend_data, buf_compute->backend_size, 0));
|
||||
LLAMA_METAL_CHECK_BUF(ggml_backend_metal_map_buffer(ctx->model.backend_metal, "kv", buf_kv->backend_data, buf_kv->backend_size, 0));
|
||||
|
||||
LLAMA_METAL_CHECK_BUF(ggml_backend_metal_map_buffer(ctx->model.backend_metal, "inp", buf_input->backend_data, buf_input->backend_size, 0));
|
||||
LLAMA_METAL_CHECK_BUF(ggml_backend_metal_map_buffer(ctx->model.backend_metal, "inp", buf_output->backend_data, buf_output->backend_size, 0));
|
||||
|
||||
//LLAMA_METAL_CHECK_BUF(ggml_backend_metal_map_buffer(ctx->model.backend_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0));
|
||||
//LLAMA_METAL_CHECK_BUF(ggml_backend_metal_map_buffer(ctx->model.backend_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0));
|
||||
#undef LLAMA_METAL_CHECK_BUF
|
||||
}
|
||||
#endif
|
||||
|
||||
fprintf(stderr, "%s: layer backends: ", __func__);
|
||||
fprintf(stderr, "input: %s, ", ggml_backend_name(ctx->model.backend_inp));
|
||||
|
||||
@ -3150,14 +3111,14 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||
ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
|
||||
ggml_set_name(scale_tensor, "scale_tensor");
|
||||
|
||||
BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
|
||||
BA = ggml_scale(lora_ctx, BA, scale_tensor);
|
||||
ggml_set_name(BA, "BA_scaled");
|
||||
}
|
||||
|
||||
ggml_tensor * r;
|
||||
if (base_t == dest_t) {
|
||||
r = ggml_add_inplace(lora_ctx, dest_t, BA);
|
||||
ggml_set_name(r, "r_add_inplace");
|
||||
r = ggml_add(lora_ctx, dest_t, BA);
|
||||
ggml_set_name(r, "r_add");
|
||||
}
|
||||
else {
|
||||
r = ggml_add(lora_ctx, base_t, BA);
|
||||
|
Loading…
Reference in New Issue
Block a user