convert_hf : reduce usages of the UNKNOWN token type

This commit is contained in:
Francis Couture-Harpin 2024-07-08 21:09:52 -04:00
parent d6fe269ced
commit d4df785868

View File

@ -634,7 +634,7 @@ class Model:
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
for token_id in range(tokenizer.vocab_size()): for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id) piece = tokenizer.IdToPiece(token_id)
@ -677,7 +677,7 @@ class Model:
for token_id, token_data in added_tokens_decoder.items(): for token_id, token_data in added_tokens_decoder.items():
token_id = int(token_id) token_id = int(token_id)
token: str = token_data["content"] token: str = token_data["content"]
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
assert tokens[token_id] == token.encode("utf-8") assert tokens[token_id] == token.encode("utf-8")
if token_data.get("special") or self.does_token_look_special(token): if token_data.get("special") or self.does_token_look_special(token):
toktypes[token_id] = SentencePieceTokenTypes.CONTROL toktypes[token_id] = SentencePieceTokenTypes.CONTROL
@ -1916,7 +1916,7 @@ class Phi3MiniModel(Model):
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
for token_id in range(tokenizer.vocab_size()): for token_id in range(tokenizer.vocab_size()):
@ -1961,7 +1961,7 @@ class Phi3MiniModel(Model):
for token_id, foken_data in added_tokens_decoder.items(): for token_id, foken_data in added_tokens_decoder.items():
token_id = int(token_id) token_id = int(token_id)
token = foken_data["content"].encode("utf-8") token = foken_data["content"].encode("utf-8")
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
assert tokens[token_id] == token assert tokens[token_id] == token
tokens[token_id] = token tokens[token_id] = token
scores[token_id] = -1000.0 scores[token_id] = -1000.0
@ -1977,7 +1977,7 @@ class Phi3MiniModel(Model):
for foken_data in added_tokens: for foken_data in added_tokens:
token_id = int(foken_data["id"]) token_id = int(foken_data["id"])
token = foken_data["content"].encode("utf-8") token = foken_data["content"].encode("utf-8")
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
assert tokens[token_id] == token assert tokens[token_id] == token
tokens[token_id] = token tokens[token_id] = token
scores[token_id] = -1000.0 scores[token_id] = -1000.0
@ -2766,7 +2766,7 @@ class ArcticModel(Model):
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
for token_id in range(tokenizer.vocab_size()): for token_id in range(tokenizer.vocab_size()):
@ -3021,7 +3021,7 @@ class T5Model(Model):
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
for token_id in range(tokenizer.vocab_size()): for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id) piece = tokenizer.IdToPiece(token_id)
@ -3239,15 +3239,14 @@ class ChatGLMModel(Model):
if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size(): if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
score = tokenizer.tokenizer.sp_model.get_score(token_id) score = tokenizer.tokenizer.sp_model.get_score(token_id)
if len(piece) == 0:
text = f"[PAD{token_id}]".encode("utf-8")
if token_id >= tokenizer.tokenizer.sp_model.vocab_size(): if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
if piece in special_tokens: if piece in special_tokens:
# show special tokens in prompt toktype = SentencePieceTokenTypes.CONTROL
toktype = SentencePieceTokenTypes.USER_DEFINED elif len(piece) == 0:
text = f"[PAD{token_id}]".encode("utf-8")
toktype = SentencePieceTokenTypes.UNUSED
else: else:
toktype = SentencePieceTokenTypes.UNKNOWN toktype = SentencePieceTokenTypes.USER_DEFINED
tokens.append(text) tokens.append(text)
scores.append(score) scores.append(score)
toktypes.append(toktype) toktypes.append(toktype)