llama : move refact in correct place + optimize graph input

This commit is contained in:
Georgi Gerganov 2023-10-29 11:48:24 +02:00
parent 739b85c985
commit da936188d8
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735

584
llama.cpp
View File

@ -3166,10 +3166,10 @@ static struct ggml_cgraph * llm_build_llama(
ggml_set_name(KQ_pos, "KQ_pos");
// shift the entire K-cache if needed
if (do_rope_shift) {
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
ggml_set_name(K_shift, "K_shift");
if (do_rope_shift) {
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * tmp =
ggml_rope_custom_inplace(ctx0,
@ -3440,10 +3440,10 @@ static struct ggml_cgraph * llm_build_baichaun(
ggml_set_name(KQ_pos, "KQ_pos");
// shift the entire K-cache if needed
if (do_rope_shift) {
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
ggml_set_name(K_shift, "K_shift");
if (do_rope_shift) {
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * tmp =
ggml_rope_custom_inplace(ctx0,
@ -3658,247 +3658,6 @@ static struct ggml_cgraph * llm_build_baichaun(
return gf;
}
static struct ggml_cgraph * llm_build_refact(
llama_context & lctx,
const llama_batch & batch,
bool worst_case) {
const auto & model = lctx.model;
const auto & hparams = model.hparams;
const auto & cparams = lctx.cparams;
const auto & kv_self = lctx.kv_self;
GGML_ASSERT(!!kv_self.ctx);
const int64_t n_embd = hparams.n_embd;
const int64_t n_layer = hparams.n_layer;
const int64_t n_ctx = cparams.n_ctx;
const int64_t n_head = hparams.n_head;
const int64_t n_head_kv = hparams.n_head_kv;
const int64_t n_embd_head = hparams.n_embd_head();
const int64_t n_embd_gqa = hparams.n_embd_gqa();
const float norm_rms_eps = hparams.f_norm_rms_eps;
const int32_t n_tokens = batch.n_tokens;
const int32_t n_kv = worst_case ? n_ctx : kv_self.n;
const int32_t kv_head = worst_case ? n_ctx - n_tokens : kv_self.head;
// printf("n_kv = %d\n", n_kv);
auto & buf_compute = lctx.buf_compute;
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute.size,
/*.mem_buffer =*/ buf_compute.data,
/*.no_alloc =*/ true,
};
struct ggml_context * ctx0 = ggml_init(params);
ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
if (batch.token) {
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
ggml_set_name(inp_tokens, "inp_tokens");
inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
} else {
#ifdef GGML_USE_MPI
GGML_ASSERT(false && "not implemented");
#endif
inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
}
ggml_set_name(inpL, "inp_embd");
// KQ_scale
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_set_name(KQ_scale, "KQ_scale");
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
ggml_set_name(KQ_mask, "KQ_mask");
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
{
cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
ggml_set_name(cur, "rms_norm_0");
// cur = cur*attn_norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
ggml_set_name(cur, "attn_norm_0");
}
// self-attention
{
// compute Q and K
struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
ggml_set_name(tmpk, "tmpk");
struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
ggml_set_name(tmpq, "tmpq");
struct ggml_tensor * Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens);
ggml_set_name(Kcur, "Kcur");
struct ggml_tensor * Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens);
ggml_set_name(Qcur, "Qcur");
// store key and value to memory
{
// compute the transposed [n_tokens, n_embd] V matrix
struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
ggml_set_name(tmpv, "tmpv");
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
ggml_set_name(Vcur, "Vcur");
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
ggml_set_name(k, "k");
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
ggml_set_name(v, "v");
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
}
struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
ggml_set_name(Q, "Q");
struct ggml_tensor * K =
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_kv, n_head_kv,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
ggml_set_name(K, "K");
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
ggml_set_name(KQ, "KQ");
// KQ_scaled = KQ / sqrt(n_embd_head)
// KQ_scaled shape [n_kv, n_tokens, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
ggml_set_name(KQ_scaled, "KQ_scaled");
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8);
ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
ggml_set_name(KQ_masked, "KQ_masked");
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
ggml_set_name(KQ_soft_max, "KQ_soft_max");
// split cached V into n_head heads
struct ggml_tensor * V =
ggml_view_3d(ctx0, kv_self.v,
n_kv, n_embd_head, n_head_kv,
ggml_element_size(kv_self.v)*n_ctx,
ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
ggml_set_name(V, "V");
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
ggml_set_name(KQV, "KQV");
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
ggml_set_name(KQV_merged, "KQV_merged");
// cur = KQV_merged.contiguous().view(n_embd, n_tokens)
cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
ggml_set_name(cur, "KQV_merged_contiguous");
// projection (no bias)
cur = ggml_mul_mat(ctx0,
model.layers[il].wo,
cur);
ggml_set_name(cur, "result_wo");
}
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
ggml_set_name(inpFF, "inpFF");
// feed-forward network
{
// norm
{
cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
ggml_set_name(cur, "rms_norm_1");
// cur = cur*ffn_norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
ggml_set_name(cur, "ffn_norm");
}
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
model.layers[il].w3,
cur);
ggml_set_name(tmp, "result_w3");
cur = ggml_mul_mat(ctx0,
model.layers[il].w1,
cur);
ggml_set_name(cur, "result_w1");
// SILU activation
cur = ggml_silu(ctx0, cur);
ggml_set_name(cur, "silu");
cur = ggml_mul(ctx0, cur, tmp);
ggml_set_name(cur, "silu_x_result_w3");
cur = ggml_mul_mat(ctx0,
model.layers[il].w2,
cur);
ggml_set_name(cur, "result_w2");
}
cur = ggml_add(ctx0, cur, inpFF);
ggml_set_name(cur, "inpFF_+_result_w2");
// input for next layer
inpL = cur;
}
cur = inpL;
// norm
{
cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
ggml_set_name(cur, "rms_norm_2");
// cur = cur*norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.output_norm);
ggml_set_name(cur, "result_norm");
}
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
ggml_set_name(cur, "result_output");
ggml_build_forward_expand(gf, cur);
ggml_free(ctx0);
return gf;
}
static struct ggml_cgraph * llm_build_falcon(
llama_context & lctx,
const llama_batch & batch,
@ -3976,10 +3735,10 @@ static struct ggml_cgraph * llm_build_falcon(
ggml_set_name(KQ_pos, "KQ_pos");
// shift the entire K-cache if needed
if (do_rope_shift) {
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
ggml_set_name(K_shift, "K_shift");
if (do_rope_shift) {
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * tmp =
ggml_rope_custom_inplace(ctx0,
@ -4774,6 +4533,247 @@ static struct ggml_cgraph * llm_build_persimmon(
return gf;
}
static struct ggml_cgraph * llm_build_refact(
llama_context & lctx,
const llama_batch & batch,
bool worst_case) {
const auto & model = lctx.model;
const auto & hparams = model.hparams;
const auto & cparams = lctx.cparams;
const auto & kv_self = lctx.kv_self;
GGML_ASSERT(!!kv_self.ctx);
const int64_t n_embd = hparams.n_embd;
const int64_t n_layer = hparams.n_layer;
const int64_t n_ctx = cparams.n_ctx;
const int64_t n_head = hparams.n_head;
const int64_t n_head_kv = hparams.n_head_kv;
const int64_t n_embd_head = hparams.n_embd_head();
const int64_t n_embd_gqa = hparams.n_embd_gqa();
const float norm_rms_eps = hparams.f_norm_rms_eps;
const int32_t n_tokens = batch.n_tokens;
const int32_t n_kv = worst_case ? n_ctx : kv_self.n;
const int32_t kv_head = worst_case ? n_ctx - n_tokens : kv_self.head;
// printf("n_kv = %d\n", n_kv);
auto & buf_compute = lctx.buf_compute;
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute.size,
/*.mem_buffer =*/ buf_compute.data,
/*.no_alloc =*/ true,
};
struct ggml_context * ctx0 = ggml_init(params);
ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
if (batch.token) {
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
ggml_set_name(inp_tokens, "inp_tokens");
inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
} else {
#ifdef GGML_USE_MPI
GGML_ASSERT(false && "not implemented");
#endif
inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
}
ggml_set_name(inpL, "inp_embd");
// KQ_scale
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_set_name(KQ_scale, "KQ_scale");
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
ggml_set_name(KQ_mask, "KQ_mask");
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
{
cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
ggml_set_name(cur, "rms_norm_0");
// cur = cur*attn_norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
ggml_set_name(cur, "attn_norm_0");
}
// self-attention
{
// compute Q and K
struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
ggml_set_name(tmpk, "tmpk");
struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
ggml_set_name(tmpq, "tmpq");
struct ggml_tensor * Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens);
ggml_set_name(Kcur, "Kcur");
struct ggml_tensor * Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens);
ggml_set_name(Qcur, "Qcur");
// store key and value to memory
{
// compute the transposed [n_tokens, n_embd] V matrix
struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
ggml_set_name(tmpv, "tmpv");
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
ggml_set_name(Vcur, "Vcur");
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
ggml_set_name(k, "k");
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
ggml_set_name(v, "v");
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
}
struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
ggml_set_name(Q, "Q");
struct ggml_tensor * K =
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_kv, n_head_kv,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
ggml_set_name(K, "K");
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
ggml_set_name(KQ, "KQ");
// KQ_scaled = KQ / sqrt(n_embd_head)
// KQ_scaled shape [n_kv, n_tokens, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
ggml_set_name(KQ_scaled, "KQ_scaled");
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8);
ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
ggml_set_name(KQ_masked, "KQ_masked");
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
ggml_set_name(KQ_soft_max, "KQ_soft_max");
// split cached V into n_head heads
struct ggml_tensor * V =
ggml_view_3d(ctx0, kv_self.v,
n_kv, n_embd_head, n_head_kv,
ggml_element_size(kv_self.v)*n_ctx,
ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
ggml_set_name(V, "V");
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
ggml_set_name(KQV, "KQV");
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
ggml_set_name(KQV_merged, "KQV_merged");
// cur = KQV_merged.contiguous().view(n_embd, n_tokens)
cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
ggml_set_name(cur, "KQV_merged_contiguous");
// projection (no bias)
cur = ggml_mul_mat(ctx0,
model.layers[il].wo,
cur);
ggml_set_name(cur, "result_wo");
}
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
ggml_set_name(inpFF, "inpFF");
// feed-forward network
{
// norm
{
cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
ggml_set_name(cur, "rms_norm_1");
// cur = cur*ffn_norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
ggml_set_name(cur, "ffn_norm");
}
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
model.layers[il].w3,
cur);
ggml_set_name(tmp, "result_w3");
cur = ggml_mul_mat(ctx0,
model.layers[il].w1,
cur);
ggml_set_name(cur, "result_w1");
// SILU activation
cur = ggml_silu(ctx0, cur);
ggml_set_name(cur, "silu");
cur = ggml_mul(ctx0, cur, tmp);
ggml_set_name(cur, "silu_x_result_w3");
cur = ggml_mul_mat(ctx0,
model.layers[il].w2,
cur);
ggml_set_name(cur, "result_w2");
}
cur = ggml_add(ctx0, cur, inpFF);
ggml_set_name(cur, "inpFF_+_result_w2");
// input for next layer
inpL = cur;
}
cur = inpL;
// norm
{
cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
ggml_set_name(cur, "rms_norm_2");
// cur = cur*norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.output_norm);
ggml_set_name(cur, "result_norm");
}
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
ggml_set_name(cur, "result_output");
ggml_build_forward_expand(gf, cur);
ggml_free(ctx0);
return gf;
}
static struct ggml_cgraph * llm_build_bloom(
llama_context & lctx,
const llama_batch & batch,
@ -5360,7 +5360,7 @@ static void llama_build_graph_input(
// inp_tokens
if (batch.token) {
cur = ggml_graph_get_tensor(graph, "inp_tokens");
GGML_ASSERT(cur != nullptr); // required
GGML_ASSERT(cur != nullptr && "missing tensor 'inp_tokens'");
ggml_allocr_alloc(lctx.alloc, cur);
@ -5374,7 +5374,7 @@ static void llama_build_graph_input(
// inp_embd
if (batch.embd) {
cur = ggml_graph_get_tensor(graph, "inp_embd");
GGML_ASSERT(cur != nullptr); // required
GGML_ASSERT(cur != nullptr && "missing tensor 'inp_embd'");
ggml_allocr_alloc(lctx.alloc, cur);
@ -5386,11 +5386,16 @@ static void llama_build_graph_input(
}
}
// TODO: make the following required based on the ARCH
switch (lctx.model.arch) {
case LLM_ARCH_LLAMA:
case LLM_ARCH_BAICHUAN:
case LLM_ARCH_FALCON:
case LLM_ARCH_PERSIMMON:
{
// KQ_pos
cur = ggml_graph_get_tensor(graph, "KQ_pos");
GGML_ASSERT(cur != nullptr && "missing tensor 'KQ_pos'");
// inp_pos
cur = ggml_graph_get_tensor(graph, "inp_pos");
if (cur) {
ggml_allocr_alloc(lctx.alloc, cur);
if (!ggml_allocr_is_measure(lctx.alloc)) {
@ -5402,22 +5407,63 @@ static void llama_build_graph_input(
data[i] = batch.pos[i];
}
}
// K_shift
cur = ggml_graph_get_tensor(graph, "K_shift");
//GGML_ASSERT(cur != nullptr && "missing tensor 'K_shift'");
if (cur) {
ggml_allocr_alloc(lctx.alloc, cur);
if (!ggml_allocr_is_measure(lctx.alloc)) {
const int64_t n_ctx = cur->ne[0];
int32_t * data = (int32_t *) cur->data;
for (int i = 0; i < n_ctx; ++i) {
data[i] = lctx.kv_self.cells[i].delta;
}
}
}
} break;
case LLM_ARCH_STARCODER:
{
// inp_pos
cur = ggml_graph_get_tensor(graph, "inp_pos");
GGML_ASSERT(cur != nullptr && "missing tensor 'inp_pos'");
ggml_allocr_alloc(lctx.alloc, cur);
if (!ggml_allocr_is_measure(lctx.alloc)) {
const int64_t n_tokens = cur->ne[0];
int32_t * data = (int32_t *) cur->data;
for (int i = 0; i < n_tokens; ++i) {
data[i] = batch.pos[i];
}
}
} break;
default:
break;
}
// common
{
// KQ_scale
cur = ggml_graph_get_tensor(graph, "KQ_scale");
if (cur) {
GGML_ASSERT(cur != nullptr && "missing tensor 'KQ_scale'");
ggml_allocr_alloc(lctx.alloc, cur);
if (!ggml_allocr_is_measure(lctx.alloc)) {
const int64_t n_embd_head = lctx.model.hparams.n_embd_head();
ggml_set_f32(cur, 1.0f/sqrtf(float(n_embd_head)));
}
}
// KQ_mask
cur = ggml_graph_get_tensor(graph, "KQ_mask");
if (cur) {
GGML_ASSERT(cur != nullptr && "missing tensor 'KQ_mask'");
ggml_allocr_alloc(lctx.alloc, cur);
if (!ggml_allocr_is_measure(lctx.alloc)) {
@ -5441,38 +5487,6 @@ static void llama_build_graph_input(
}
}
}
// KQ_pos
cur = ggml_graph_get_tensor(graph, "KQ_pos");
if (cur) {
ggml_allocr_alloc(lctx.alloc, cur);
if (!ggml_allocr_is_measure(lctx.alloc)) {
const int64_t n_tokens = cur->ne[0];
int32_t * data = (int32_t *) cur->data;
for (int i = 0; i < n_tokens; ++i) {
data[i] = batch.pos[i];
}
}
}
// K_shift
cur = ggml_graph_get_tensor(graph, "K_shift");
if (cur) {
ggml_allocr_alloc(lctx.alloc, cur);
if (!ggml_allocr_is_measure(lctx.alloc)) {
const int64_t n_ctx = cur->ne[0];
int32_t * data = (int32_t *) cur->data;
for (int i = 0; i < n_ctx; ++i) {
data[i] = lctx.kv_self.cells[i].delta;
}
}
} while (0);
}
static struct ggml_cgraph * llama_build_graph(