Commit Graph

424 Commits

Author SHA1 Message Date
0cc4m
2307523d32
ggml : add Vulkan backend (#2059)
* Vulkan loader code

* Fix matmul kernel, continue implementation

* Continue implementation

* Vulkan memory management

* Vulkan development

* Matmul call

* Add aligned malloc and free for VMA

* Continue implementation

* First matmul success

* GEMM Kernel optimization

* 1D Blocktiling

* 2D Blocktiling

* Write coalescing

* Continue vulkan implementation and optimization

* First FP16 attempt, disabled for now

* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel

* Enable device extensions properly, restore fp16 matmul op

* Fix mulmat_f16

* Output FP32 in fp16 matmul shader

* Fix f16_to_f32 kernel

* dequant_q4_0 kernel

* Add VMA library

* Avoid requesting dedicated memory, VMA can decide that by itself

* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly

* add cmake commands

* Add 2d write operation, profiling code

* Fix 2d write

* Fix queue selection for AMD RADV

* Fix trailing whitespace in vk_mem_alloc.h

* Add WIP warp tile mat mul shaders

* Disable glslc optimization

* Disable glslc optimization for CMake

* Optimize warptile matmul shader, replace blocktile with it

* Add split-k optimization for small matrix multiplication

Use semaphores for synchronization instead of fences or waitidle

Rework async write/read for synchronization

* Fix validation errors, improve compatibility with AMD GPUs

* Rework command buffer handling

* Variable matmul kernel using specialization constants

* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints

* Reuse semaphores

* Handle stage flags during command buffer submission properly

* Increase matmul test runs for consistent results

* Fix F32 matmul

* Add vectorized loading and zeropadding for matrix multiplication

* Use pinned memory for f16 preprocessing

* Don't force aligned matmul

* Don't free before queue done

* Replace VMA library with native Vulkan buffer management

* Basic offloading support with mul_f32 and dmmv for q4_0

* Run glslc commands in parallel

* Unroll loops in dmmv shader

* Reduce usage of waitIdle

* Reuse pinned allocation for f16 conversion

* Handle devices with only a single queue

* Fix trailing whitespace in CMakeLists.txt

* Allow parallel execution of kernels, parallelize third and fourth dimension calls

* Add fallback for devices only supporting one DescriptorSet per DescriptorPool

* Move to graph function similar to CUDA implementation

* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function

* Add F32 dmmv shaders

* Batch submissions

* Add .spv to gitignore

* Split off matrix vector multiplication for separate optimization

* Use single command buffer for matrix vector multiplication ops

* Reduce overhead of mul_f32 calls by using a single command buffer

* Add submission batching to mul_f32

* Fix tests

* Add missing barrier

* Add further missing barrier

* Add further ops

* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions

* Remove unnecessary cblas link

* Fix descriptor set pre-allocation assert

* Add runtime shader compilation, start transferring shaders to this approach

* Transfer remaining shaders to header and compile on runtime

* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16

* Add support for q4_1, q5_0, q5_1 and q8_0

* Remove unnecessary scalar layout extension

* Parse graph early to pre-record command buffers

* Add q6_k support

* Add multi-submit for command buffers

* Fix q6_k dequant shader for AMD

* Fix q6_k for GPUs without fp16 support

* Simplify q6_k fp16 fix

* Minor fixes

* Fix wg_denom of m-mulmat shaders

* Add Python-based Vulkan shader generator

* Replace shaderc dependency with precompiled shaders

Fix python script to generate shaders

* Clean up code

* Fix shader generator script Windows compatibility

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>

* Close file before deletion

* Fix vulkan shader fp32 name

* Add q2_k and q3_k support

Add validation check to compare shader results to cpu results

* Add q4_k support

* Add q5_k support

* Bake SPIR-V bytecode into the library instead of loading shaders from file

* Switch to signal semaphores for flexibility

Prepare broadcasting support for mul mat

* Finish broadcasting mul mat support for GQA

* Clean up unused functions

Add repeat op

* Add further ops, not yet enabled. Improve semaphore code

* Reduce number of used semaphores by utilizing timelines more properly

* Remove queue information

* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations

* Add Vulkan to llama-bench

* Remove cblas dependency

* Fix matmul k-split bug

* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader

* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug

* Fix issues with float16 overflows in shaders

* Fix issues with older Vulkan headers on Ubuntu 22.04

* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers

* Implement further ops, rework op_f32 calls, fix bugs

* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code

* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders

* Merge upstream changes, fix conflicts, adapt soft_max op

* Fix Python and shader header format

* Free model gpu buffers on exit

* Use single queue per device to simplify code

* Add matmul shader support for running multiple calculations in parallel

* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible

* Fix missing event cast

* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity

* Fix warning about empty C function parameters

* Fix compiler warnings

* Properly implement Vulkan backend buffer handling

* Fix oversized host staging buffers

* Simplify barrier synchronization calls

* Fix gcc warnings

* Implement max_size for backend buffer types to limit the size of a single allocation

* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size

* refactor multi buf

* Disable unsupported ops to fix tests

* Check for maintenance4 support before using it

* Handle devices with only a single queue

* Fix single queue logic

* propagate buffer usage in multi buffers

* Implement rope_neox op

* Cleanup header and other files

* Simplify gpu_extras by removing events and putting staging memcpys into contexts

* Move queue into context

Add not-yet-enabled async backend ops

* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization

* Add get_max_size to SYCL backend.

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : fix trailing whitespace

---------

Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 19:03:59 +02:00
Abhilash Majumder
0f648573dd
ggml : add unified SYCL backend for Intel GPUs (#2690)
* first update for migration

* update init_cublas

* add debug functio, commit all help code

* step 1

* step 2

* step3 add fp16, slower 31->28

* add GGML_LIST_DEVICE function

* step 5 format device and print

* step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue

* support main device is non-zero

* step7 add debug for code path, rm log

* step 8, rename all macro & func from cuda by sycl

* fix error of select non-zero device, format device list

* ren ggml-sycl.hpp -> ggml-sycl.h

* clear CMAKE to rm unused lib and options

* correct queue: rm dtct:get_queue

* add print tensor function to debug

* fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481

* summary dpct definition in one header file to replace folder:dpct

* refactor device log

* mv dpct definition from folder dpct to ggml-sycl.h

* update readme, refactor build script

* fix build with sycl

* set nthread=1 when sycl, increase performance

* add run script, comment debug code

* add ls-sycl-device tool

* add ls-sycl-device, rm unused files

* rm rear space

* dos2unix

* Update README_sycl.md

* fix return type

* remove sycl version from include path

* restore rm code to fix hang issue

* add syc and link for sycl readme

* rm original sycl code before refactor

* fix code err

* add know issue for pvc hang issue

* enable SYCL_F16 support

* align pr4766

* check for sycl blas, better performance

* cleanup 1

* remove extra endif

* add build&run script, clean CMakefile, update guide by review comments

* rename macro to intel hardware

* editor config format

* format fixes

* format fixes

* editor format fix

* Remove unused headers

* skip build sycl tool for other code path

* replace tab by space

* fix blas matmul function

* fix mac build

* restore hip dependency

* fix conflict

* ren as review comments

* mv internal function to .cpp file

* export funciton print_sycl_devices(), mv class dpct definition to source file

* update CI/action for sycl code, fix CI error of repeat/dup

* fix action ID format issue

* rm unused strategy

* enable llama_f16 in ci

* fix conflict

* fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml

* fix ci cases for unsupported data type

* revert unrelated changed in cuda cmake
remove useless nommq
fix typo of GGML_USE_CLBLAS_SYCL

* revert hip cmake changes

* fix indent

* add prefix in func name

* revert no mmq

* rm cpu blas duplicate

* fix no_new_line

* fix src1->type==F16 bug.

* pass batch offset for F16 src1

* fix batch error

* fix wrong code

* revert sycl checking in test-sampling

* pass void as arguments of ggml_backend_sycl_print_sycl_devices

* remove extra blank line in test-sampling

* revert setting n_threads in sycl

* implement std::isinf for icpx with fast math.

* Update ci/run.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/sycl/run-llama2.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/sycl/run-llama2.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add copyright and MIT license declare

* update the cmd example

---------

Co-authored-by: jianyuzh <jianyu.zhang@intel.com>
Co-authored-by: luoyu-intel <yu.luo@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:56:23 +02:00
Judd
e976423005
ggml : check ggml_add src1 type (ggml/708)
Co-authored-by: Judd <foldl@boxvest.com>
2024-01-27 16:59:00 +02:00
0cc4m
a1d6df129b
Add OpenCL add kernel (#5151)
* Add OpenCL add kernel

* Put add kernel into different string to stay within MSVC string length limit, disable float16 support due to bad results
2024-01-26 23:07:32 +01:00
snadampal
7032f4f634
ggml : update softmax n_task calculation (#5126)
updated the n_task calculation to use max number of
threads possible. This has improved the prompt eval
performance by around 5% for DOT kernels and by
around 10% for MMLA kernels on AWS Graviton3.
2024-01-26 19:17:59 +02:00
Georgi Gerganov
89758723c7
minor : clean-up some warnings and style (#5094)
* minor : clean-up some warnings and style

ggml-ci

* ggml : add comment
2024-01-23 14:12:57 +02:00
Reinforce-II
780e24a22e
ggml : parallelize FP32 conversion when using BLAS (#5045)
* make GGML_TASK_INIT phase can be run in multithread

* multithreaded dequantize in mul_mat when using blas library

* minor fixes

* update outdated comment
* fix coding style

* simplify code

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-22 15:15:08 +02:00
XiaotaoChen
3ce7e8f8e7
llava : MobileVLM support (#4954)
* MobileVLM native implementation

* delete depthwise_conv_2d and permute_cpy relative code, replace the two by the existed functions, and opt ldp definition, support LLAMA_PERF option for CMake

* move android script to example/llava directory

* Fix the editor config checks

---------

Co-authored-by: Chenxiaotao03 <chenxiaotao03@meituan.com>
2024-01-22 15:09:35 +02:00
Georgi Gerganov
38566680cd
ggml : add IQ2 to test-backend-ops + refactoring (#4990)
* ggml : add IQ2 to test-backend-ops + refactoring

ggml-ci

* cuda : update supports_op for IQ2

ggml-ci

* ci : enable LLAMA_CUBLAS=1 for CUDA nodes

ggml-ci

* cuda : fix out-of-bounds-access in `mul_mat_vec_q`

ggml-ci

* tests : avoid creating RNGs for each Q tensor

ggml-ci

* tests : avoid creating RNGs for each tensor

ggml-ci
2024-01-17 18:54:56 +02:00
Georgi Gerganov
ba69bbc84c
imatrix : offload to GPU support (#4957)
* backend : add eval callback

ggml-ci

* backend : group nodes in a single compute when user don't need them

* backend : clean-up the implementation

ggml-ci

* simple : do not perform tensor data copy if not needed

* simple : fix

* imatrix : offload to GPU support

* imatrix : fix ggml_mul_mat_id hanlding

ggml-ci

* ci : add imatrix test

ggml-ci

* ci : rearrange output

ggml-ci
2024-01-17 18:46:30 +02:00
Kawrakow
334a835a1c
ggml : importance matrix support for legacy quants (#4969)
* imatrix: adding support for legacy quants

* imatrix: guard Q4_0/Q5_0 against ffn_down craziness

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-16 19:51:26 +02:00
Justine Tunney
a0b3ac8c48
ggml : introduce GGML_CALL function annotation (#4850)
This change makes it possible to build ggml-cuda.cu and ggml-metal.m as
independent dynamic shared objects, that may be conditionally linked at
runtime in a multiplatform binary. It introduces a GGML_CALL annotation
that documents which functions have a cyclic call relationship, between
the application code and GPU modules.

This change does nothing, unless the build defines -DGGML_MULTIPLATFORM
which causes back-references and function pointers to conform to MS ABI
which is supported by NVCC, ROCm, XCode, GCC and Clang across platforms
2024-01-16 13:16:33 +02:00
Kawrakow
467a882fd2
Add ability to use importance matrix for all k-quants (#4930)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 16:21:12 +02:00
Kawrakow
147b17ac94
2-bit quantizations (#4897)
* imatrix: load

* imatrix: WIP

* imatrix: Add Q2_K quantization

* imatrix: also guard against Q2_K_S quantization without importance matrix

* imatrix: guard even more against low-bit quantization misuse

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 09:45:56 +02:00
Johannes Gäßler
c71d608ce7
ggml: cache sin/cos for RoPE (#4908) 2024-01-13 21:41:37 +01:00
texmex76
c30b1ef39a
gguf : fix potential infinite for-loop (#4600)
Co-authored-by: Bernhard Gstrein <gstrein@informatik.uni-freiburg.de>
2024-01-13 18:06:20 +02:00
slaren
e7e4df031b
llama : ggml-backend integration (#4766)
* llama : ggml-backend integration

* ggml-backend : add names to buffers

* fix unmap after loading

* batched-bench : add tensor_split param

* llama : check for null tensor_split

* ggml-backend : increase GGML_MAX_BACKENDS

* improve graph splitting, partial fix for --no-kv-offload

* cuda : add ggml-backend split buffer support

* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)

* ggml : fix null backend dereference (#4807)

* ggml : fix null backend dereference

* ggml : also check ggml_backend_is_cpu

* test-backend-ops : check buffer allocation failures

* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)

* ggml : fix mul_mat_id work size

* llama : rewrite session kv load/set without graphs

* minor

* llama : only initialize used backends, free backends on context free

* llama : abort ctx if cuda backend init fails

* llama : rewrite lora with ggml-backend and compute on CPU

ggml-ci

* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer

* opencl : add ggml-backend buffer type

* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)

* llama : on Metal, by default offload the full model

ggml-ci

* metal : page align the data ptr (#4854)

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* cuda : fix split buffer free

* address review comments

* llama-bench : add split-mode parameter

* fix whitespace

* opencl : fix double initialization

* server : add --split-mode parameter

* use async copy and compute to improve multi-gpu performance

ggml-ci

* use async memcpys to copy the graph outputs to the CPU

* fix opencl

* use a host buffer for the cpu compute buffer for faster copies to the gpu

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
Kawrakow
326b418b59
Importance Matrix calculation (#4861)
* imatrix: 1st version

* imatrix: WIP

* Cleanup

* Update examples/imatrix/imatrix.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-12 06:59:57 +01:00
Kawrakow
49662cbed3
ggml : SOTA 2-bit quants (add IQ2_XS) (#4856)
* iq2_xs: basics

* iq2_xs: this should have been in the basics

* iq2_xs: CUDA and scalar CPU works

* iq2_xs: WIP Metal

* iq2_xs: Metal now works

* iq2_xs: working, but dog slow, ARM_NEON dot product

* iq2_xs: better ARM_NEON dot product

We are now at 19.5 t/s for TG-128 and 61 t/s for PP-512 when
running on the CPU.

* iq2_xs: AVX2 dot product - 19.5 t/s

* iq2_xs: faster AVX2 dit product

21.4 t/s for TG-128, 59.2 t/s for PP-512.
The latter is 2x compared to the previous version.

* iq2_xs: had forgotten to delete iq2-data.h

* Add llama enum for IQ2_XS

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-11 21:39:39 +02:00
Timothy Cronin
f85a973aa1
ggml : remove ggml_cpy_inplace and ggml_cont_inplace (ggml/693) 2024-01-11 09:39:05 +02:00
Halalaluyafail3
c910e3c28a
Fix execlp call (ggml/689)
NULL can be an integer constant expression with the value zero, in this case the behavior would be undefined because of an incorrect type being passed to the variable arguments.
2024-01-11 09:39:05 +02:00
Kawrakow
dd5ae06405
SOTA 2-bit quants (#4773)
* iq2_xxs: basics

* iq2_xxs: scalar and AVX2 dot products

Needed to change Q8_K to have quants in the -127...127 range,
else the IQ2_XXS AVX implementation becomes very awkward.
The alternative would have been to use Q8_0 instead. Perhaps
I'll change later, for now this is what we have.

* iq2_xxs: ARM_NEON dot product

Somehow strangely slow (112 ms/token).

* iq2_xxs: WIP Metal

Dequantize works, something is still wrong with the
dot product.

* iq2_xxs: Metal dot product now works

We have
PP-512 = 475 t/s
TG-128 = 47.3 t/s

Not the greatest performance, but not complete garbage either.

* iq2_xxs: slighty faster dot product

TG-128 is now 48.4 t/s

* iq2_xxs: slighty faster dot product

TG-128 is now 50.9 t/s

* iq2_xxs: even faster Metal dot product

TG-128 is now 54.1 t/s.

Strangely enough, putting the signs lookup table
into shared memory has a bigger impact than the
grid values being in shared memory.

* iq2_xxs: dequantize CUDA kernel - fix conflict with master

* iq2_xxs: quantized CUDA dot product (MMVQ)

We get TG-128 = 153.1 t/s

* iq2_xxs: slightly faster CUDA dot product

TG-128 is now at 155.1 t/s.

* iq2_xxs: add to llama ftype enum

* iq2_xxs: fix MoE on Metal

* Fix missing MMQ ops when on hipBLAS

I had put the ggml_supports_mmq call at the wrong place.

* Fix bug in qequantize_row_iq2_xxs

The 0.25f factor was missing.
Great detective work by @ggerganov!

* Fixing tests

* PR suggestion

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 16:02:32 +01:00
Georgi Gerganov
c1d7cb28d3
ggml : do not sched_yield when calling BLAS (#4761)
* ggml : do not sched_yield when calling BLAS

ggml-ci

* ggml : fix do_yield logic

ggml-ci

* ggml : simplify do_yield logic

ggml-ci
2024-01-05 15:18:21 +02:00
Guillaume Wenzek
5f66ebca9c ggml : extend ggml_get_rows, ggml_repeat, ggml_concat (ggml/639)
* add more int ops

* ggml_compute_forward_dup_bytes

* add tests

* PR comments

* tests : minor indentations

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-03 14:38:38 +02:00
automaticcat
24a447e20a
ggml : add ggml_cpu_has_avx_vnni() (#4589)
* feat: add avx_vnni based on intel documents

* ggml: add avx vnni based on intel document

* llama: add avx vnni information display

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* Update ggml.c

Fix indentation upgate

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-30 10:07:48 +02:00
bssrdf
afc8c19291
ggml : fix some mul mat cases + add tests for src1 F16 (ggml/669)
* fixed mul-mat error for old GPUs

* style fixes

* add mul mat src1 f16 test cases, fix more cases

ggml-ci

---------

Co-authored-by: bssrdf <bssrdf@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2023-12-29 14:54:19 +02:00
slaren
dc68f0054c
cuda : fix vmm pool with multi GPU (#4620)
* cuda : fix vmm pool with multi GPU

* hip

* use recommended granularity instead of minimum

* better error checking

* fix mixtral

* use cudaMemcpy3DPeerAsync

* use cuda_pool_alloc in ggml_cuda_op_mul_mat

* consolidate error checking in ggml_cuda_set_device

* remove unnecessary inlines

ggml-ci

* style fixes

* only use vmm for the main device

* fix scratch buffer size, re-enable vmm pool for all devices

* remove unnecessary check id != g_main_device
2023-12-26 21:23:59 +01:00
WillCorticesAI
de8e496437
Update comment for AdamW implementation reference. (#4604)
Co-authored-by: Will Findley <findley@gmail.com>
2023-12-26 11:42:08 +01:00
slaren
5bf3953d7e
cuda : improve cuda pool efficiency using virtual memory (#4606)
* cuda : improve cuda pool efficiency using virtual memory

* fix mixtral

* fix cmake build

* check for vmm support, disable for hip

ggml-ci

* fix hip build

* clarify granularity

* move all caps to g_device_caps

* refactor error checking

* add cuda_pool_alloc, refactor most pool allocations

ggml-ci

* fix hip build

* CUBLAS_TF32_TENSOR_OP_MATH is not a macro

* more hip crap

* llama : fix msvc warnings

* ggml : fix msvc warnings

* minor

* minor

* cuda : fallback to CPU on host buffer alloc fail

* Update ggml-cuda.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml-cuda.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* ensure allocations are always aligned

* act_size -> actual_size

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2023-12-24 14:34:22 +01:00
slaren
48b7ff193e
llama : fix platforms without mmap (#4578)
* llama : fix platforms without mmap

* win32 : limit prefetch size to the file size

* fix win32 error clobber, unnecessary std::string in std::runtime_error
2023-12-22 13:12:53 +02:00
Herman Semenov
48b24b170e
ggml : add comment about backward GGML_OP_DIAG_MASK_INF (#4203) 2023-12-22 11:26:49 +02:00
Georgi Gerganov
afefa319f1
ggml : change ggml_scale to take a float instead of tensor (#4573)
* ggml : change ggml_scale to take a float instead of tensor

* ggml : fix CPU implementation

* tests : fix test-grad0

ggml-ci
2023-12-21 23:20:49 +02:00
slaren
d232aca5a7
llama : initial ggml-backend integration (#4520)
* llama : initial ggml-backend integration

* add ggml-metal

* cuda backend can be used though ggml-backend with LLAMA_GGML_BACKEND_CUDA_TEST
access all tensor data with ggml_backend_tensor_get/set

* add ggml_backend_buffer_clear
zero-init KV cache buffer

* add ggml_backend_buffer_is_hos, used to avoid copies if possible when accesing tensor data

* disable gpu backends with ngl 0

* more accurate mlock

* unmap offloaded part of the model

* use posix_fadvise64(.., POSIX_FADV_SEQUENTIAL) to improve performance with mmap

* update quantize and lora

* update session copy/set to use ggml-backend

ggml-ci

* use posix_fadvise instead of posix_fadvise64

* ggml_backend_alloc_ctx_tensors_from_buft : remove old print

* llama_mmap::align_offset : use pointers instead of references for out parameters

* restore progress_callback behavior

* move final progress_callback call to load_all_data

* cuda : fix fprintf format string (minor)

* do not offload scales

* llama_mmap : avoid unmapping the same fragments again in the destructor

* remove unnecessary unmap

* metal : add default log function that prints to stderr, cleanup code

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-21 21:07:46 +01:00
Ebey Abraham
b9e74f9bca
llama : add phi-2 + fix NeoX rope + ggml_mul_mat_set_prec (#4490)
* phi2 implementation

* fix breaking change

* phi-2 : various fixes

* phi-2 : use layer norm eps

* py : whitespaces

* llama : fix meta KV override bug

* convert : phi don't add BOS token

* convert : revert "added_tokens_decoder" change

* phi-2 : scale Q instead of KQ for better precision

* ggml : fix NeoX rope to rotate just first n_dims

* cuda : less diff in the rope_neox kernel

* ggml : add ggml_mul_mat_set_prec

ggml-ci

* Update ggml-cuda.cu

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml-cuda.cu

Co-authored-by: slaren <slarengh@gmail.com>

* cuda : ggml_cuda_op_mul_mat_cublas support F32 precision

* cuda : remove oboslete comment

---------

Co-authored-by: Ebey Abraham <ebeyabraham@microsoft.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2023-12-18 19:27:47 +02:00
slaren
ee4725a686
ggml : group mul_mat_id rows by matrix (cpu only) (#4480)
* ggml : group mul_mat_id rows by matrix (cpu only)

* remove mmid parameters from mm forward

* store row groups in wdata and calculate only once in GGML_TASK_INIT

ggml-ci
2023-12-15 12:45:50 +01:00
slaren
6744dbe924
ggml : use ggml_row_size where possible (#4472)
* ggml : use ggml_row_size where possible

ggml-ci

* ggml : move ggml_nbytes_split to ggml-cuda.cu
2023-12-14 20:05:21 +01:00
slaren
cafcd4f895
ggml : remove n_dims from ggml_tensor (#4469)
ggml-ci
2023-12-14 16:52:08 +01:00
LostRuins
20a68a7030
ggml : add ggml_row_size() (fixes llama out of space) (#4461)
* Fixes "Not enough space in the context's memory pool" encountered on certain models, which seems to be caused by some imprecision related to the automatic casting of floating point values

* do not cast to size_t, instead just use doubles

* ggml : add ggml_row_size(), deprecate ggml_type_sizef()

* ggml : fix row size compute to avoid overflows

* tests : fix sizey -> sizez

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-14 14:13:33 +02:00
Georgi Gerganov
55e87c3749
ggml : fix OpenCL broadcast requirement for ggml_mul (close #4453) 2023-12-14 10:35:29 +02:00
Georgi Gerganov
4d98d9a656
sync : ggml (SD ops, tests, kernels) (#4444)
* sync : ggml (SD ops, tests, kernels)

ggml-ci

* cuda : restore im2col

ggml-ci

* metal : fix accuracy of dequantization kernels

ggml-ci

* cuda : restore correct im2col

ggml-ci

* metal : try to fix moe test by reducing expert size

ggml-ci

* cuda : fix bin bcast when src1 and dst have different types

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-12-13 21:54:54 +02:00
slaren
799a1cb13b
llama : add Mixtral support (#4406)
* convert : support Mixtral as LLAMA arch

* convert : fix n_ff typo

* llama : model loading

* ggml : sync latest ggml_mul_mat_id

* llama : update graph to support MoE

* llama : fix cur -> cur_expert

* llama : first working version

* llama : fix expert weighting in the FFN

* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)

* ggml : add n_as argument to ggml_mul_mat_id

* ggml : fix ggml_get_rows to take into account ne02 / ne11

* metal : add more general support for ggml_get_rows + tests

* llama : add basic support for offloading moe with CUDA

* metal : add/mul/div use general kernel when src1 not cont

* metal : reduce the kernel launches for ggml_mul_mat_id

* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D

* ggml : update get_rows f16 and q

* cuda : support non-contiguous src1 in get_rows

* llama : offload missing ffn_moe_silu

* metal : fix ggml_get_rows to work with non-cont src1

* metal : add indirect mat-vec kernels for all quantization types

* llama : do not quantize expert gating tensors

* llama : add n_expert and n_expert_used to hparams + change quants

* test-backend-ops : add moe test

* cuda : fix get_rows when ncols is odd

* convert : determine n_ctx correctly

* metal : fix ggml_mul_mat_id for F32

* test-backend-ops : make experts more evenly probable (test_moe)

* test-backend-ops : cleanup, add moe test for batches

* test-backend-ops : add cpy from f32 -> all types test

* test-backend-ops : fix dequantize block offset

* llama : fix hard-coded number of experts

* test-backend-ops : simplify and disable slow tests to avoid CI timeout

* test-backend-ops : disable MOE test with thread sanitizer

* cuda : fix mul_mat_id with multi gpu

* convert : use 1e6 rope_freq_base for mixtral

* convert : fix style

* convert : support safetensors format

* gguf-py : bump version

* metal : add cpy f16 -> f32 kernel

* metal : fix binary ops for ne10 % 4 != 0

* test-backend-ops : add one more sum_rows test

* ggml : do not use BLAS with ggml_mul_mat_id

* convert-hf : support for mixtral-instruct (#4428)

* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct

* convert : use sentencepiece tokenizer for Mixtral-instruct

* convert : make flake8 happy

* metal : fix soft_max kernels

ref: 1914017863

* metal : limit kernels to not use more than the allowed threads

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
2023-12-13 14:04:25 +02:00
Richard Kiss
9494d7c477
english : use typos to fix comments and logs (#4354) 2023-12-12 11:53:36 +02:00
Georgi Gerganov
fe680e3d10
sync : ggml (new ops, tests, backend, etc.) (#4359)
* sync : ggml (part 1)

* sync : ggml (part 2, CUDA)

* sync : ggml (part 3, Metal)

* ggml : build fixes

ggml-ci

* cuda : restore lost changes

* cuda : restore lost changes (StableLM rope)

* cmake : enable separable compilation for CUDA

ggml-ci

* ggml-cuda : remove device side dequantize

* Revert "cmake : enable separable compilation for CUDA"

This reverts commit 09e35d04b1.

* cuda : remove assert for rope

* tests : add test-backend-ops

* ggml : fix bug in ggml_concat

* ggml : restore `ggml_get_n_tasks()` logic in `ggml_graph_plan()`

* ci : try to fix macOS

* ggml-backend : remove backend self-registration

* ci : disable Metal for macOS cmake build

ggml-ci

* metal : fix "supports family" call

* metal : fix assert

* metal : print resource path

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-12-07 22:26:54 +02:00
Georgi Gerganov
fbbc42827b
ggml : reuse ggml_get_n_tasks() in ggml_graph_plan() (#4308)
* ggml : fix soft max out-of-bounds access

ggml-ci

* ggml : reuse ggml_get_n_tasks() in ggml_graph_plan()

ggml-ci
2023-12-03 15:56:35 +02:00
Georgi Gerganov
adf3de4f69
ggml : fix soft max out-of-bounds access (#4307)
ggml-ci
2023-12-03 15:56:22 +02:00
Georgi Gerganov
ef47ec18da
ggml : add ggml_soft_max_ext (#4256)
* metal : implement soft_max_ext

* cuda : implement soft_max_ext

* ggml : implement soft_max_ext (CPU)

* batched-bench : print threads

ggml-ci

* metal : simplify soft_max encoding

ggml-ci

* cuda : use 512 threads for soft_max instead of 32

* ggml : update soft max cpu

* cuda : do warp-based block reduce

* cuda : increase max block size to 1024

* cuda : fix warp reduction initialization of shared mem

* metal : warp-based reduction for soft max kernel

* metal : warp-based reduce for rms_norm

* metal : simplify soft max kernel

ggml-ci

* alloc : fix build with debug
2023-12-01 10:51:24 +02:00
Georgi Gerganov
8406b0924b
ggml : re-enable BLAS for CPU when src0 != F32 + remove redundant full offload checks in llama.cpp (#4240)
* ggml : use blas even if src0 is not F32

* llama : use n_threads_batch only when n_tokens >= 32

ggml-ci

* llama : revert n_threads_batch logic

ggml-ci
2023-11-28 10:32:03 +02:00
Jared Van Bortel
f3b269813f
ggml : fix -Warray-bounds warning with gcc (#4231) 2023-11-26 22:58:43 -05:00
slaren
e85bb1a8e7
llama : add functions to get the model's metadata (#4013)
* llama : add functions to get the model's metadata

* format -> std::to_string

* better documentation
2023-11-17 17:17:37 +02:00
gwjr
3e916a07ac
finetune : speed-up ggml_compute_forward_out_prod_f32 via BLAS (#4079)
* Remove logically superfluous assertions and order by dimension

* Use cblas_sgemm() to implement ggml_compute_forward_out_prod()

* Remove ggml_compute_forward_out_prod_use_blas(), fix compiling errors on cmake/zig, remove trailing whitespace

* Add openBLAS support for sgemm() in compute_forward_out_prod()
2023-11-17 16:48:19 +02:00
texmex76
8da46278e1
gguf : fix potential infinite loops while parsing (#4100)
Co-authored-by: Bernhard Gstrein <gstrein@cs.uni-freiburg.de>
2023-11-16 17:01:48 +02:00
Georgi Gerganov
3d68f364f1
ggml : sync (im2col, GPU conv, 32-bit arm compat) (#4060)
ggml-ci
2023-11-13 16:55:52 +02:00
Georgi Gerganov
4760e7cc0b
sync : ggml (backend v2) (#3912)
* sync : ggml (backend v2) (wip)

* sync : migrate examples and llama.cpp to dynamic graphs (wip)

* sync : update tests + fix max op params to 64

ggml-ci

* sync : ggml-cuda

ggml-ci

* llama : fix save/load state context size

ggml-ci

* sync : try to fix build on tvOS

* sync : pass custom graph sizes in training examples

* sync : update graph copies to new ggml API

* sync : update sync-ggml.sh with new files

* scripts : fix header in sync script

* train : fix context size calculations

* llama : increase inference graph size up to 4096 nodes

* train : allocate grads for backward graphs

* train : allocate grads for gb_tmp
2023-11-13 14:16:23 +02:00
xaedes
e9c1cecb9d
ggml : fix backward rope after YaRN (#3974)
* fix backward process of rope

rope backward process was broken after YaRN RoPE (#2268) implementation, due to missing changes in backward functions.

the code for the backward process is nearly identically to the forward process:
the only difference is the sign of the sin-values.

to avoid future regressions remove the near-duplicate backward functions and reuse the forward code:

for this a new function argument `bool forward` was added to `ggml_compute_forward_rope_f32` and `ggml_compute_forward_rope_f16`.
the sin-values will be negated when forward is false.

* fix finetune rope call to use correct default attn_factor of 1.0f

* remove unused `ggml_rope_xpos_back`

it is better to have only one `ggml_rope_back` function that accepts all rope parameters, so that `ggml_compute_backward` can propagate all parameters without having to switch between different rope_back variants.

* fix comments explaining the sinus sign in ggml_forward_rope

* add missing function arguments in declaration

* fix function argument type in declaration
2023-11-07 10:04:51 +02:00
Georgi Gerganov
4ff1046d75
gguf : print error for GGUFv1 files (#3908) 2023-11-02 16:22:30 +02:00
Georgi Gerganov
2756c4fbff
gguf : remove special-case code for GGUFv1 (#3901)
ggml-ci
2023-11-02 11:20:21 +02:00
cebtenzzre
898aeca90a
llama : implement YaRN RoPE scaling (#2268)
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
Co-authored-by: Jeffrey Quesnelle <jquesnelle@gmail.com>
2023-11-01 18:04:33 -04:00
Andrew Godfrey
73bdcb395e
finetune : add -ngl parameter (#3762)
* Add '-ngl' support to finetune.cpp

* Add fprintf in ggml_cuda_op_add

When I tried CUDA offloading during finetuning following the readme, I got an assert here.
This probably isn't an important case because inference later gives a warning saying you should use f16 or f32 instead when using lora

* Add 'finetune.sh', which currently fails when using GPU

"error: operator (): Finetuning on tensors with type 'f16' is not yet supported"

* tweak finetune.sh

* Suppress some warnings in ggml.c

* Add f16 implementation to ggml_compute_forward_add_f16_f32

* Add an f16 case to ggml_add_cast_impl and llama_build_lora_finetune_graphs

* finetune.sh: Edit comments

* Add "add_f16_f32_f32_cuda"

* Tweak an error message

* finetune.sh: Add an optional LLAMA_MODEL_DIR variable

* finetune.sh: Add an optional LLAMA_TRAINING_DIR variable

* train : minor

* tabs to spaces

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
2023-11-01 13:49:04 +02:00
Georgi Gerganov
207b51900e
ggml : move FP16 <-> FP32 code to ggml-impl.h (#3861)
* ggml : move FP16 <-> FP32 stuff to ggml-impl.h

ggml-ci

* tests : fix ARM build

* ggml : explicitly initialize deprecated type traits

* ggml : add math.h to ggml-impl.h

* ggml : remove duplicate static assert macros

* ggml : prefix lookup tables with ggml_

ggml-ci

* ggml-impl : move extern "C" to start of file
2023-10-30 19:19:15 +02:00
Georgi Gerganov
d69d777c02
ggml : quantization refactoring (#3833)
* ggml : factor all quantization code in ggml-quants

ggml-ci

* ggml-quants : fix Zig and Swift builds + quantize tool

ggml-ci

* quantize : --pure option for disabling k-quant mixtures

---------

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
2023-10-29 18:32:28 +02:00
Georgi Gerganov
b2f7e04bd3
sync : ggml (conv ops + cuda MSVC fixes) (#3765)
ggml-ci
2023-10-24 21:51:20 +03:00
Georgi Gerganov
2b4ea35e56
cuda : add batched cuBLAS GEMM for faster attention (#3749)
* cmake : add helper for faster CUDA builds

* batched : add NGL arg

* ggml : skip nops in compute_forward

* cuda : minor indentation

* cuda : batched cuBLAS GEMMs for src0 F16 and src1 F32 (attention ops)

* Apply suggestions from code review

These changes plus:

```c++
#define cublasGemmBatchedEx hipblasGemmBatchedEx
```

are needed to compile with ROCM. I haven't done performance testing, but it seems to work.

I couldn't figure out how to propose a change for lines outside what the pull changed, also this is the first time trying to create a multi-part review so please forgive me if I mess something up.

* cuda : add ROCm / hipBLAS cublasGemmBatchedEx define

* cuda : add cublasGemmStridedBatchedEx for non-broadcasted cases

* cuda : reduce mallocs in cublasGemmBatchedEx branch

* cuda : add TODO for calling cublas from kernel + using mem pool

---------

Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
2023-10-24 16:48:37 +03:00
Qin Yue Chen
8cf19d60dc
gguf : support big endian platform (#3552)
* check whether platform is 390x if yes->do not import immintrin.h

* support s390x big endian

* support --bigendian option for s390x
1. verified with baichuan7b-chat with float 16 on s390x
2. verified with baichuan7b-chat
3. verified with chinese-alpaca-2-13b-f16

* update format based on editor-config checker result

* Update convert-baichuan-hf-to-gguf.py

* 1. check in ggml.c if endianess is not match
2. update GGUF version
3. change get_pack_prefix to property
4. update information log

* always use "GGUF" as beginng of GGUF file

* Compare "GGUF" with file header char by char
1.  Set GGUF_MAGIC to "GGUF" string instead of int value
2. Compare "GGUF" char by char to ensure its byte order
3. Move bytes swap code from convert.py to gguf.py write_tensor_data

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-20 14:19:40 +03:00
Herman Semenov
f439e506e8
ggml : fix rope + llama minor optimizations (#3560)
* Minor fixes and fixed memleak

* Using const auto references in range-based loop C++17
2023-10-20 13:02:12 +03:00
slaren
424b6381c4
ggml : add context enumeration functions (#3605)
finetune : fix assert failure in ggml-alloc
2023-10-13 12:23:10 +02:00
M. Yusuf Sarıgöz
370359e5ba
examples: support LLaVA v1.5 (multimodal model) (#3436)
* WIP: start implementing LLaVA

* rm scratch buf for now, will revert after cleanup

* LLaVA image encoder is working. will combine with llama

* Add llava inference code, but it's buggy. debugging

* LLaVA is working e2e, needs to optimize memory allocation + cleanup

* Use ggml_allocr + rm unnecessary code

* fix: crlf -> lf

* fix: new line at EoF

* fix: trailing whitespace

* Add readme

* Update readme

* Some cleanup

* Are you happy editorconfig?

* rm unused batch image preprocessing

* rm unused import

* fix: rm designated initializers

* introduce pad-to-square mode for non-square images

* are you happy editorconfig?

* gitignore /llava

* Handle cases where image file does not exist

* add llava target to Makefile

* add support for 13b model variant

* Maybe seed is unlucky?

* Check if apples are compared to apples

* are you happy editorconfig?

* Use temperature = 0.1 by default

* command line: use gpt_params_parse()

* minor

* handle default n_predict

* fix typo

* llava : code formatting, rename files, fix compile warnings

* do not use Wno-cast-qual for MSVC

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-12 18:23:18 +03:00
Jan Ploski
f5f9121de1
llm : add MPT support (#3417)
* CUDA: added support for ggml_clamp (see also: https://github.com/ggerganov/ggml/issues/545)

* mpt : added an implementation based (mostly) on falcon integration, modified with deltas from ggml/examples/mpt

* mpt : protect against "clip_qkv": null in mpt-7b

* mpt : quick fix to avoid "Strange model" warning when quantizing MPT models

* mpt : addendum to changeset:84e30e8 - leave parameter clamp_kqv out from metadata rather than use 0.0 to indicate "no clamping" (more compliant with the current GGUF spec?)

* mpt : standardized all tensor names to follow GGUF spec

* mpt : addendum to changeset:1be89c40 - use "req" parameter of GGUF_GET_KEY macro instead of duplicate code

* mpt : fixed comment s/gptneox/mpt/

* mpt : remove tabs, trailing whitespace

* mpt : removed ne01 + n_past == ne00 assertion from alibi (cuda/f32) and rope_shift from build_mpt

* mpt : updated convert-mpt-hf-to-gguf.py to reflect changes made to convert-gptneox-hf-to-gguf.py in pr:3252

* comment out n_past instead of marking it unused

* mpt : removed hardcoded +178 from convert script in favor of utilizing hparams["vocab_size"]

* mpt : remove unused tokenizer_json in convert script

* ggml : remove obsolete n_past assert in ggml_alibi

* llama : print clam_kqv and max_alibi_bias hparams

---------

Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-10 10:50:23 +03:00
Georgi Gerganov
fcca0a7004
refact : fix convert script + zero out KV cache to avoid nans (#3523)
* refact : fix convert script + zero out KV cache to avoid nans

* ggml : silu(-inf) should never happen

* metal : assert various kernel requirements
2023-10-09 14:32:17 +03:00
Georgi Gerganov
db3abcc114
sync : ggml (ggml-backend) (#3548)
* sync : ggml (ggml-backend)

ggml-ci

* zig : add ggml-backend to the build
2023-10-08 20:19:14 +03:00
Georgi Gerganov
0d152b37fe
ggml : fix build after #3329 2023-10-04 16:25:41 +03:00
ds5t5
f8c90cdbaa
llm : add Refact model (#3329)
* add refact model

* resolve comments

* rebase to the latest

* solve alibi cpu error

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-04 16:23:39 +03:00
Georgi Gerganov
f93af02488
sync : ggml (conv 1d + 2d updates, UB fixes) (#3468)
* sync : ggml (conv 1d + 2d updates)

ggml-ci

* ggml : fix UB in q5_0 and q5_1 quantize code

ggml.c:1033:39: runtime error: left shift of 1 by 31 places cannot be represented in type 'int'
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior

ggml.c:1081:39: runtime error: left shift of 1 by 31 places cannot be represented in type 'int'
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior

ggml-ci

* tests : fix UB in test-quantize-perf
2023-10-04 15:29:58 +03:00
Tameem
79f34abddb
ggml : add RISC-V Vector Support for K-Quants and improved the existing intrinsics (#3453)
* Added RVV intrinsics support for Q8 quantize row and also improved the existing dot product function for risc-v.

The RVV intrinsics is added for the following quantize row functions
   quantize_row_q8_0
   quantize_row_q8_1

The following dot product functions have also been optimized by using LMUL = 1/2 instead of LMUL = 1
   ggml_vec_dot_q4_0_q8_0
   ggml_vec_dot_q4_1_q8_1
   ggml_vec_dot_q5_0_q8_0
   ggml_vec_dot_q5_1_q8_1

And vector initialization in Q5 by temporary array is also replaced by the vid intrinsics

Signed-off-by: Ahmad Tameem <ahmad.tameem@10xengineers.ai>

* Added RVV intrinsics support for k_quants

This adds RISC-V Vector intrinsics support for the following K_quants functions for both QKK = 256 and QKK = 64
   ggml_vec_dot_q2_K_q8_K
   ggml_vec_dot_q3_K_q8_K
   ggml_vec_dot_q4_K_q8_K
   ggml_vec_dot_q5_K_q8_K
   ggml_vec_dot_q6_K_q8_K

Signed-off-by: Ahmad Tameem <ahmad.tameem@10xengineers.ai>

---------

Signed-off-by: Ahmad Tameem <ahmad.tameem@10xengineers.ai>
2023-10-03 21:38:19 +03:00
shibe2
665018c749
CLBlast: Add broadcast support for matrix multiplication (#3402)
Broadcast src0 into src1 across dimensions 2 and 3 when needed.
This is required for models that use GQA.
2023-10-02 21:26:15 +02:00
Cebtenzzre
bc39553c90
build : enable more non-default compiler warnings (#3200) 2023-09-28 17:41:44 -04:00
Qu Zongfu
7f1a0fe709
ggml : release the requested thread pool resource (#3292)
* Release the requested thread pool resource

* Release the requested thread pool resource 2

---------

Co-authored-by: Zongfu ZF3 Qu <quzf3@Lenovo.com>
2023-09-28 22:51:52 +03:00
xaedes
0e76a8992c
train : finetune LORA (#2632)
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train

* remove unnecessary Adam(W) optimizer tensors.

reduces optimizer memory overhead from 7*modelsize to 2*modelsize.

additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t.

bumps training checkpoint file version, but old checkpoints can still be read.
new version with less tensors is saved.

* add gradient clipping to AdamW

* Fix reset of unused g->nodes and g->grads to NULL

* implement gradient checkpointing for training

reduces memory overhead from O(n_layer) to O(sqrt(n_layer))

as explained in readme of https://github.com/cybertronai/gradient-checkpointing

* remove unused compute buffer 3

* add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes

GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);

* change AdamW decay parameter to work like the torch AdamW decay parameter

It is now relative to Adam learning rate `alpha*sched`.
Before that it was relative to `sched` only.

`alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1]

* change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT

* change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW

btw: the default weight decay parameter for torch.optim.AdamW is 0.01

* bug fixes for cross entropy loss

ggml_cross_entropy_loss: sums where not correctly added in workload of each thread
ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues

guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16

cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup.
so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance.

* fix test-grad0 for cross_entropy_loss

the second argument to cross_entropy_loss must sum up to 1 for each row

* fix test-grad0 for soft_max

dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)

* improve finite differences of test-grad0 by using double instead of float

* change cross_entropy_loss to output average over all rows

this helps keeping the loss and gradients in a sane range

* improve gradient checkpointing

sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal.
since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different:

```
  given: n, u, v
  objective: minimize(a*u+b*v) where a*b=n, a>0, b>0
  b=n/a
  minimize(a*u+v*n/a)
  diff(a*u+v*n/a, a) = u - (v*n/a)/a
  diff(a*u+v*n/a, a) == 0
  u - (v*n/a)/a == 0
  u == v*n/(a*a)
  u*a*a = v*n
  a*a = v*n/u
  a = sqrt(n*v/u)
```

this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage.

* disable gradient checkpointing debug output

* llama : fix rope usage in train-text-from-scratch after ChatGLM change

* add more training parameters:

--enable-restart N         Only for Adam optimizer. Enable restarts of cos-decay
--disable-restart N        Only for Adam optimizer. Disable restarts of cos-decay
--opt-past N               Number of optimization iterations to track for delta convergence test. Disabled when zero.
--opt-delta N              Maximum delta for delta convergence test. Disabled when <= zero.
--opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero.
--adam-epsf N              AdamW epsilon for convergence test. Disabled when <= zero.
--adam-min-alpha N         Adam minimum learning rate alpha, usually 0.1 * alpha

* replace memcpy with reshape operation so that the graph is not cut at the input

this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it

* remove unused function argument from get_example_targets_batch

* measure and print total training time

* add optimization callback to ggml_opt_resume_g

this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)).

can be used for dynamic learning schedule and setting input data for batches before each iteration

* use optimization callback in training

allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters

reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration

* add minimum number of tensor dimensions to apply weight decay (default 2)

this allows to not apply weight decay to bias parameters

* rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup

* fix increase of model.train_samples and model.train_tokens

now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations

* change sampling parameters for prediction after training to defaults of common.h

and clarify what is context for prediction and what are generated tokens

* tighten abs error bounds for cross_entropy_loss in test-grad0

* add conditional compilation of using F16 exp in flash attention

uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention

* tighten abs error bounds for flash_attn in test-grad0

* tighten abs error bounds for sqrt in test-grad0

* remove out-commented vectorized code of opt_adam

the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead

* ggml : update ggml_rms_norm_back with configurable eps

* llama training : fix ggml_rms_norm_back calls to pass configurable eps

* remove trailing whitespace

* add train function using automatic gradient checkpointing backward pass and allocator

* in train function replace add_inplace by regular add

because using add_inplace seems to result in different gradients

* don't use allocate hash_map on context

because the context has no_alloc=True when using memory allocator resulting in NULL data pointers

* correctly clone reshape and permute operations by also cloning tensor->nb values

* fix variable name and add missing type cast

* terminate recursive tensor cloning when reaching tensor without src tensors

* correctly clone view tensors by setting data pointers

without this the checkpointing would only work when being used together with memory allocator

* fix variable names

* swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn`

* add input tensors as checkpoints

so that recursive tensor cloning of gradient checkpointing terminates on input tensors

* fix variable name and add missing boolean negation

* make sure some tensors are not reallocated by inserting new temporary nodes depending on them:

output and parameter gradient tensors need to be available at the end of the graph execution

parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration

checkpoint tensors are allocated all together to reduce memory allocator fragmentation

afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs

* fix ASSERT to work with zero layers

* add training options whether to use allocator and/or unified training function

* integrate unified training function which may use memory allocator

the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing

* format name of cloned tensors with " (clone)" suffix

* set names for tensors in unified train function for easier debugging

* allocate graph on context using ggml_new_graph

* remove handwritten training functions

* remove unused training parameters "use_scratch" and "use_unified"

* remove trailing whitespace

* remove unused train params: mem_compute1_gb & mem_compute2_gb

mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions
mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)

* remove unused forward_batch function

* add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly

* only use ggml_allocr_alloc when tensor has NULL data and is no view

* fix test when to create temporary backward graph

temporary backward graph is only necessary when using checkpointing

* fix memory "leak" in optimizers

each iteration a new cplan with new memory for work data was allocated.
now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data.

* reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator

with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory.

the computation results are the same

* add API functions to access llama model tensors

* add stub example for finetuning, based on train-text-from-scratch

* move and remove code

* add API functions to access remaining model parameters:

mult, head and rot

* first draft for LORA finetune training

* remove const model and layer arguments in API functions for accessing model tensors

* bug fixes to make finetune compile

automatic allocator does not work yet

* add debug prints for training memory improvements

* fix names of lora tensors

* avoid stack overflow resulting from big ggml_cgraph

replace stack allocation and ggml_build_forward by ggml_new_graph in combination with ggml_build_forward_expand

* replace llama API functions to get model tensors by one function to get model tensor by name

LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);

* remove unused call to not existing llama_get_layer_from_model

* implement ggml_compute_forward_out_prod_q_f32

* remove trailing whitespace

* add lora finetune support on quantized base model tensors

* add ggml_add_cast API function

this function works like ggml_add, but accepts a data type for the resulting tensor.
only supported for quantized src0 input.

* use ggml_add_cast in finetuning

lora-applied weights will now have data type F32, which improves gradients when finetuning quantized base models

* bug fix: actually use result type passed to ggml_add_cast

* make sure base model tensors data cannot be used in viewable operations

memory allocator would try to make lora application inplace on base model tensors.
since those are memory mapped this will result in memory access violations

* fix bug in ggml_out_prod which resulted in wrong n_dims of result tensors

* avoid keeping in memory ALL of the gradients

The problem here stems from ggml_graph_reset. This function is called in the optimization function, before each graph computation, to reset the gradients to zero. This required a unique memory slot for each gradient: allocating memory from a previosly freed memory location might lead to non-zero input gradients.

During ggml_compute_backward the gradients are build stepwise by adding or substracting new values, starting from a OP_NONE tensor which needs to contain zero-values. This requires the graph reset.

To avoid this I now remember in ggml_build_backward_expand the original OP_NONE gradient tensors in a hash table, which is passed to ggml_compute_backward. There instead of using add (or sub or similar) I test whether the existing gradient to be changed is a zero-valued-tensor by looking up its existence in the hash table. When it is such a zero-tensor it will not be modified, but replaced by the value to be added, otherwise the regular add (not inplace, allocator will take care of this) will be used. This way none of those zero-tensor values will be necessary in the final backward graph and more importantly they won't need a unique memory slot, just to make them zero.

* remove trailing whitespace

* remove debug prints and function to compute tensor data hash

* improve optimization iteration prints

* adjust maximal values to support finetuning 3B models

* change default finetune params lora_r and lora_alpha to match the n_rank parameters of 4

* bug fix: make sure finetune input gradient is allocated at begin and kept until end

* remove unnecessary src tensor from ggml_get_rows_back

we don't need data of src[2] for computation, only to setup the correct output shape.
remove dependency on src[2], so that allocator can work more freely.

the computational graph is still completely determined, because the output shape is naturally included.
this is similar to how ggml_reshape does it.

* remove unnecessary src tensor from ggml_repeat & ggml_repeat_back

we don't need data of src[1] for computation, only to setup the correct output shape.
remove dependency on src[1], so that allocator can work more freely.

the computational graph is still completely determined, because the output shape is naturally included

* resolve todo

allocator will only make it inplace when they are of the same type

* mixing multiple LORA adapters is now possible

pass more than one '--lora FNAME' argument to apply more than one LORA.
use '--lora-scaled FNAME S' when you want to specify a user-defined scale for an adapter.

* add option to save finetune output every N iterations

* also save latest finetune output with ITERATION="LATEST" and print where files are saved

saving with LATEST makes it easier to resume training from the latest checkpoint
the string "LATEST" can be configured with command line option "--fn-latest STR"

* update checkpoint train stats before saving via "--save-every"

* add command line option `--rank-wo N` for rank of wo tensor

* update finetune README

* fix dump_non_result_info_yaml to output multiple lora adapters

* bug fix: replace GGML_TYPE_SIZE[t] by ggml_type_size(t)

* replace llama_n_mult by llama_n_ff

* finetune bug fixes to compile with merged in code from master

* remove prediction related code to reduce duplicated code with main

use main instead

* reduce large memory overhead in train-text-from-scratch

all gradients had to be pinned so that graph_reset works correctly.
this is no longer necessary with the changes to ggml_compute_backward introduced in this PR.

* add comment explaining why finetune checkpoints are allocated in one block

* make default value of float member a float literal

* handle rms_norm and rope parameters the same as in train-text-from-scratch

* remove unused code

* remove vocab related code as it is unnecessary

* add LLM_KV_TRAINING_TYPE to train-text-from-scratch checkpoints

so that they can be differentiated from lora finetune checkpoints

* add gguf constants and load/save functions from train-text-from-scratch

* add load & save lora finetune checkpoints via gguf

* add python script to convert old finetune checkpoint files to gguf

* remove old checkpoint save & load code

* remove code to print data checksums which was used to verify correctness of new gguf code

* omit tokenization when training is disabled, only save llama lora adapter

training can be disabled by passing '-n 0' to finetune

* remove trailing whitespace

* update README.md

* implement ggml_compute_forward_repeat_f16

* avoid stack overflow of large cgraphs in test-grad0

* add ggml API functions ggml_unravel_index, ggml_get_i32_nd and its analogs for set and for f32

ggml_get_i32_1d, ggml_set_i32_1d, ggml_get_f32_1d, ggml_set_f32_1d now support non-contiguous tensors.
in case of non-contiguous tensor, the 1d index is unraveled into a multi index using ggml_unravel_index to be passed to '_nd' function equivalent.

this fixes a bug in test-grad0 which happens due to ggml_build_backward not building purely contiguous tensors anymore

* increase test-grad0 context mem size to accommodate for bigger cgraph

* add sanity check to ggml_compute_backward, asserting the correct shape of gradients

* fix ggml_acc_or_set to return tensor of correct shape

* remove unused 'inplace' argument from ggml_compute_backward function

inplace operations to add gradients are no longer created by ggml_compute_backward
use allocator to automatically make inplace operations

* add missing argument 'int i0' to ggml_get_i32_nd & ggml_set_i32_nd header declarations

* fix error message in ggml_allocr_alloc to display actual max_avail

* fix check_gradient

ggml_build_backward_expand was previously replaced by ggml_build_backward, but the assignment of forward graph to backward graph missing

* use tensor->view_src instead of ggml_is_view and get_view_source

* move gradient checkpointing code into ggml, new API function:

// build gradient checkpointing backward graph gb for gf using provided checkpoints
// gb_tmp will contain original backward graph with rewritten backward process nodes,
// but without the second forward pass nodes.
GGML_API void ggml_build_backward_gradient_checkpointing(
        struct ggml_context   * ctx,
        struct ggml_cgraph    * gf,
        struct ggml_cgraph    * gb,
        struct ggml_cgraph    * gb_tmp,
        struct ggml_tensor  * * checkpoints,
        int                     n_checkpoints);

* replace custom data getters and setters by ggml functions

* train-text-from-scratch can train (full finetune) gguf models

just pass the gguf model via `--checkpoint-in FN`.
after this, to continue training, pass the generated checkpoint instead of the original gguf model.

tested with smaller models, bigger models may exceed available memory.
use (LORA) finetune for those.

* remove trailing whitespace

* add option to save train-text-from-scratch output every N iterations

* update README.md

* fix warnings

* fix warnings

* remove finetune option to disable allocator

the allocator should always be used.
by making sure that it is always used it gets easier to implement automatic memory requirements computation

* add tensor checkpoints only when gradient checkpointing is enabled

* initialize opt ggml context if none was provided

* add ggml-alloc API function 'ggml_allocr_max_size' to get max size of alloc

GGML_API size_t ggml_allocr_max_size(struct ggml_allocr * alloc);

* finetune: automatically allocate all memory and changes to command line options

remove '--n_examples N' parameter, as it no longer makes sense to call optimization process multiple times in a loop.
add '--only_write_lora' command line option: will skip tokenization and training, to only write a llama.cpp comptabile LORA adapter.
remove memory buffer related command line options.
improve iteration console output.

* add finetune to Makefile

* update README.md

* print time per iteration and estimate remaining time

* increase measured alloc size by tensor_alignment

ggml_allocr_reset will reduce the given size by up to tensor_alignment-1

* fix README.md

* add some more allocator debug prints

* bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue

* revert last commit

"bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue"

"alloc was freeing an externally allocated tensor, because it calculated the end of allocator memory as alloc->data + alloc->max_size instead of alloc->data + alloc->size."

This is intentional to reduce the risk of freeing external tensors when measuring. Unless max_size is not properly calculated, I don't see why this is an issue.

* remove unnecessary "0x" before "%p" output

* move measurement memory segment to upper region of the address space

* update README.md

* fix printf format warnings

* add missing gguf_free in load_checkpoint_lora_file

* load default rms_norm and rope parameters from base model

* add gradient accumulation

specify number accumulation steps with '--grad-acc N'.
this will simulate a bigger batch size of grad_acc*batch.

* fix tracking of train_samples and train_tokens

* build : fix compile warnings

* ggml : fix L-BFGS linesearch loop

* improve finetune time measurement

fix printf warnings on system where int64_t is (long int).
change time datatypes to double because values get big with long training times.
exclude file saving from time measurement.
converge faster to actual time per iteration by removing very small first duration before first iteration was performed.
fix bug in output of total training time, the reported value was 1000 times to small.

* specify default lora rank with '--lora-r N'

'--lora-r N' will specify default rank for all tensors
'--rank-wq N', etc. will override this default rank for specific tensor types.

* fix gradient accumulation bug where the same batch was used for each microstep

* fix gradient accumulation bug where the same batch was used for each microstep

* support grouped-query-attention in ggml_flash_attn and ggml_flash_attn_back

k and v can now be repeated in q along ne[2]

in forward pass just use modulo to compute k and v indices, like ik2 = iq2 % nek2.

in backard pass this won't work as easy, because multiple threads will compete to accumulate to the same k->grad[:,ik1,ik2,ik3] and v->grad[:,iv1,iv2,iv3].
so we change the parallelization over q rows to be over k rows. this ensures non-overlapping (ik2,ik3) across threads.
in each thread we then iterate over the number of repetitions of k/v in q to compute iq2 as iq2 = ik2 + irep*nek2.

since ne2 is not the same for q,k and v we also change how the gradients are concatenated into the result tensor.
additionally the offsets of gradq, gradk and gradv in the result tensor are now memory aligned.

we also simplify the compute_backward part of flash_attn to use ggml_reshape instead of switching over the number of dimensions.
this needs a small change to ggml_reshape, removing the assertion of second argument to be contiguous.
since only the shape (ne) of the second reshape argument is of relevance, its memory layout (nb) is irrelevant -> it can very well be non-contiguous.

change test-grad0 to also test for repeated k/v in q.

this changes the rng and now results in small gradient differences in softmax. these solely come from using f16 exp table lookup in forward softmax: when temporarily changing softmax to use actual exp function, the reported gradient differences go away. gradient differences coming solely from f16 table lookup are acceptable.
added a note to explain this.

* add llama API functions to get grouped-query-attention n_head parameter 'n_head_kv'.

* fix finetune to support grouped-query-attention (using flash-attention)

note: ggml changes to ggml_out_prod are necessary to support grouped-query-attention without flash-attention.

* support broadcastable a in out_prod(a, b) and backward pass of broadcasting mul_mat(a, b)

* test broadcasting mul_mat backward pass

* decouple random number generator of each operation test

when changing one test the rng of others tests is not influenced anymore

* add comment briefly describing what ggml_repeat_back does

* simplify broadcasting mul_mat backward using ggml_repeat_back

* add cgraph evaluation order member and corresponding enum type

this controls in which order ggml_build_forward visits source nodes.
by default the nodes are visited left to right, i.e. src[0] first.
in some cases it is beneficial for ggml-alloc to visit in a different order.
two possible orders are supported: left-to-right (src[0] first) and right-to-left (src[0] last).

* measure max compute size for each cgraph eval order and use best order

this can bring huge memory savings:
e.g. codellama-34b with n_ctx=64, n_batch=1 goes from 92927.8mb down to 4627.6 MB

* remove unused command line options

* add sample start patterns and options to force new or by default resume last shuffling

* update shuffle rng state on reshuffle

* exclude known zero values from computations in flash_attn_f32 & flash_attn_back_f32

* remove probably unnecessary exception type flags from stringstream

* pass correct max number of tokens to llama_tokenize

* account for possible leading whitespace that will be added by tokenizer
e.g. '\t' will be tokenized by llama spm tokenizer to [29871, 12]

* use unrolled vec_mad in out_prod

y is vec_mad result vec.
x is vec_mad input vec.
v is vec_mad input scalar.

ggml_vec_mad_f32_unroll will internally loop over x and v with same y.

GGML_VEC_MAD_UNROLL is by default defined to 32.

This value is empirical optimized using performance test runs of out-prod in openllama-3b finetune with 256 context length and batch size 1. It gives 23% performance boost for out_prod.

Full measurements of out-prod runtime in ms:
	unroll_xv	unroll_yv
1	67014.643	87826.469
2	77117.552	89077.656
4	72091.311	109121.657
8	61077.543	88678.334
16	56914.67	79514.947
24	59024.595	84350.254
28	55952.446	83368.73
32	51476.658	85177.745
36	55973.792	84659.92
40	55139.616	93844.738
48	60736.392	93330.267
64	99856.878	116994.99

Second column is when unrollying yv instead of xv

* set lora_alpha to value of lora_r if it is not set via command line

otherwise only changing lora_r will change scaling of lora adapter used in prediction

* reshuffle original sample order instead of the previous shuffled order

otherwise resumed reshuffle will not result in same sample order

* block tiling for out-prod inspired by mul-mat

block sizes are empirically optimized

roughly doubles the flops of out-prod

* exclude some more known zero values from computations in flash_attn_f32 & flash_attn_back_f32

* add static keywords

* remove outcommented old code

* update train-text-from-scratch with tokenization, sample selection and shuffling from finetune

* remove lbfgs related train parameters

* move common train functions into common/train.[h|cpp]

* move train state into struct train_state

* move train data saving code into callback to unify code of opt_callback

train_params are still different in finetune and train-text-from-scratch, so it can't yet be moved to train.h|cpp

* move common train params into common/train

* move common opt_callback into common/train

* fix consume_common_train_arg

* save and load head_count_kv in lora checkpoints

* increase train_samples by used_samples instead of number of batches

on batch can contain more than one sample when option "fill_with_next_samples" is used

* fix usage of llama_tokenize

* remove static from process_escape since we need it exposed in header

* fix code formating of long function declarations

* fix condition in load_train_state_gguf

* use die("msg") instead of replace GGML_ASSERT(!"msg") or throw std::runtime_error("msg")

* fix saving and loading of training type

* remove terminating '\0' from tokenization

(llama_tokenize is now passed the string length instead of relying on terminating '\0')

* fix compile warnings

* fix compile warnings

* use new/delete for train_state instead of malloc/free

using malloc may result in seg faults when trying to assign string fields

* assert that sample_count > 0, avoiding division by zero

* fix frand to return value in interval [0,1)

* add train option "--sample-random-offsets"

Use samples beginning at random offsets.
The offset is only applied to the first sample in each batch context window.
Together with "--fill-with-next-samples" this may help for training endless text generation.

For example given a dataset containing samples "abcd", "ABCD", "0123".
With context size of 8 and options "--fill-with-next-samples", "--no-separate-with-eos", "--no-separate-with-bos",
the context windows of batches could only be filled with "abcdABCD", "ABCDabcd", "0123abcd", etc.

With "--sample-random-offsets" it can also be filled with "23abcdAB", "bcd0123A", etc.

* deduplicate code into function

* remove n_rot hparam, as it must always be hparam.n_embd_head()

* align code

* assert correct base model tensor shapes

* move some params from lora hparams into model hparams and load model params from gguf

this equalizes the model definition in finetune and text-from-scratch and removes the need for additional llama api functions to get model parameters

* remove now unnecessary llama API functions to get model params that where added by this PR

* train-text-from-scratch: automatically allocate model tensors, remove option '--mem-model N'

* train-text-from-scratch: automatically allocate opt context

* train-text-from-scratch: automatically allocate input tensors

* train-text-from-scratch: automatically allocate compute memory

* remove unused options and equalize train-text-from-scratch with finetune

* initialize opt->loss_after with zero

* add export-lora program

* remove trailing whitespace

* add export-lora build in Makefile

* remove unused struct tensor_info from export-lora

* add export-lora build dependency to llama

because it depends on common, which depends on llama

* update finetune README.md

* cancel optimization when specified number of epochs is completed

* improve handling of export-lora arguments

print errors and warnings when files could not be read or created

* Fix export-lora.cpp "not enough space in the context's memory pool" (#1)

* Fix export-lora.cpp "not enough space in the context's memory pool"

Without this patch, export-lora would sometimes error with "not enough space in the context's memory pool (needed 656784, available 656800)".

* increase required context size by 5*GGML_MEM_ALIGN instead of plain 16

---------

Co-authored-by: xaedes <xaedes@gmail.com>

* improve handling of not yet supported tensor types

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: meatbag-18a <145869052+meatbag-18a@users.noreply.github.com>
2023-09-28 21:40:11 +03:00
Cebtenzzre
2db94d98ed
gguf : basic type checking in gguf_get_* (#3346) 2023-09-28 14:30:31 -04:00
Georgi Gerganov
ec893798b7
llama : custom attention mask + parallel decoding + no context swaps (#3228)
* tests : verify that RoPE is "additive"

* llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask)

* ggml : ggml_rope now takes a vector with positions instead of n_past

* metal : add rope_f16 kernel + optimize cpy kernels

* llama : unified KV cache + batch inference API

* llama : add new llama_decode() API that works with llama_batch

* llama : add cell_max heuristic for more efficient kv_cache

* llama : extend llama_kv_cache API

* llama : more robust cell_max heuristic + wip shift

* metal : disable concurrency optimization

* llama : add llama_kv_cache_shift_seq + no more context swaps

* llama : apply K-cache roping for Falcon and Baichuan

* speculative : fix KV cache management

* parallel : example for serving multiple users in parallel

* parallel : disable hot-plug to avoid cache fragmentation

* fixes : speculative KV cache + llama worst-case graph

* llama : extend batch API to select which logits to output

* llama : fix worst case graph build

* ggml-cuda : update rope implementation for parallel decoding (#3254)

* ggml-cuda : update rope implementation for parallel decoding

* better solution for p0 computation

* fix rope

* simpler rope implementation

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* make : add parallel to build + fix static functions in llama.cpp

* simple : fix token counting

* parallel : various improvements

* llama : fix cell_max logic + rename functions

* parallel : try smaller batches when the KV cache is fragmented

* parallel : fix sequence termination criteria

* llama : silence errors KV cache errors

* parallel : remove new line from prompt

* parallel : process system prompt once + configurable paramters + llama API

* parallel : remove question with short answers

* parallel : count cache misses

* parallel : print misses on each request

* parallel : minor

* llama : fix n_kv to never become 0

* parallel : rename hot-plug to continuous-batching

* llama : improve llama_batch API + simplify parallel example

* simple : add parallel decoding support

* simple : improve comments + free batch

* ggml-cuda : add rope f16, restore performance with parallel decoding (#3272)

* ggml-cuda : add rope f16, restore performance

* offload KQ_mask with all models

* fix rope shift

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : disable MPI for now

ggml-ci

* train : make KQ_pos memory buffer permanent via dummy scale op

* ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275)

ggml-ci

* parallel : fix bug (extra BOS) + smaller token_prev array

* parallel : fix cases where the input prompts can overflow the batch

* parallel : add disabled experimental batch chunking in powers of two

* llama : llama.h formatting + comments

* simple : add README.md

* llama : fix kv cache heuristic when context is less than 32

* parallel : fix crash when `-n -1`

* llama : simplify returns if/else branches

* metal : use mm kernels for batch size > 2

* examples : utilize new llama_get_logits_ith()

* examples : add example for batched decoding

* examples : do not eval prompt 2 times (close #3348)

* server : clear the KV cache beyond n_past before llama_decode

* server : avoid context swaps by shifting the KV cache

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-09-28 19:04:36 +03:00
Georgi Gerganov
8c00b7a6ff
sync : ggml (Metal F32 support + reduce ggml-alloc size) (#3192)
* sync : ggml (Metal F32 support + reduce ggml-alloc size)

ggml-ci

* llama-bench : fix ggml_cpu_has_metal() duplicate function

ggml-ci
2023-09-15 19:06:03 +03:00
Georgi Gerganov
a51b687657
metal : relax conditions on fast matrix multiplication kernel (#3168)
* metal : relax conditions on fast matrix multiplication kernel

* metal : revert the concurrnecy change because it was wrong

* llama : remove experimental stuff
2023-09-15 11:09:24 +03:00
Eric Sommerlade
b52b29ab9d
arm64 support for windows (#3007)
Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com>
2023-09-12 21:54:20 -04:00
Georgi Gerganov
b3e9852e47
sync : ggml (CUDA GLM RoPE + POSIX) (#3082)
ggml-ci
2023-09-08 17:58:07 +03:00
Przemysław Pawełczyk
cb6c44c5e0
build : do not use _GNU_SOURCE gratuitously (#2035)
* Do not use _GNU_SOURCE gratuitously.

What is needed to build llama.cpp and examples is availability of
stuff defined in The Open Group Base Specifications Issue 6
(https://pubs.opengroup.org/onlinepubs/009695399/) known also as
Single Unix Specification v3 (SUSv3) or POSIX.1-2001 + XSI extensions,
plus some stuff from BSD that is not specified in POSIX.1.

Well, that was true until NUMA support was added recently,
so enable GNU libc extensions for Linux builds to cover that.

Not having feature test macros in source code gives greater flexibility
to those wanting to reuse it in 3rd party app, as they can build it with
FTMs set by Makefile here or other FTMs depending on their needs.

It builds without issues in Alpine (musl libc), Ubuntu (glibc), MSYS2.

* make : enable Darwin extensions for macOS to expose RLIMIT_MEMLOCK

* make : enable BSD extensions for DragonFlyBSD to expose RLIMIT_MEMLOCK

* make : use BSD-specific FTMs to enable alloca on BSDs

* make : fix OpenBSD build by exposing newer POSIX definitions

* cmake : follow recent FTM improvements from Makefile
2023-09-08 15:09:21 +03:00
Kunshang Ji
7f412dab9c
enable CPU HBM (#2603)
* add cpu hbm support

* add memalign 0 byte check

* Update ggml.c

* Update llama.cpp

* ggml : allow ggml_init with 0 size

* retrigger ci

* fix code style

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-09-08 03:46:56 +02:00
Cebtenzzre
00d62adb79
fix some warnings from gcc and clang-tidy (#3038)
Co-authored-by: xaedes <xaedes@gmail.com>
2023-09-07 13:22:29 -04:00
Przemysław Pawełczyk
fec2fb19e4
ggml : posixify madvise and pagesize (#3037)
* llama : use posix_madvise() instead of madvise() derived from BSD

sed -i 's,\<madvise\>,posix_&,g;s,\<MADV_,POSIX_&,g' llama.cpp

* ggml : use sysconf(_SC_PAGESIZE) instead of getpagesize() derived from BSD

sed -i 's,getpagesize(),sysconf(_SC_PAGESIZE),g' ggml.c

* metal : use sysconf(_SC_PAGESIZE) instead of getpagesize() derived from BSD

sed -i 's,getpagesize(),sysconf(_SC_PAGESIZE),g' ggml-metal.m
2023-09-07 11:15:06 +03:00
Jhen-Jie Hong
21f3d1be86
k-quants : fix build on armv7 (android only) (#2920)
* k-quants : fix build on armv7

* ggml : cleanup unused arm32 specific impl

* k-quants : avoid some unused vzero / mzero define

* ggml-alloc : use 4g for MEASURE_MAX_SIZE in 32-bit arm
2023-09-02 15:23:45 +03:00
Tameem
5aec2cfaac
ggml : add RISC-V vector intrinsics support (#2929)
* added support for RISCV CFLAGS & native compile + cross compile options

* Add RISC-V Vector Intrinsics Support

Added RVV intrinsics for following
   ggml_vec_dot_q4_0_q8_0
   ggml_vec_dot_q4_1_q8_1
   ggml_vec_dot_q5_0_q8_0
   ggml_vec_dot_q5_1_q8_1
   ggml_vec_dot_q8_0_q8_0

Co-authored-by: Sharafat <sharafat.hussain@10xengineers.ai>
Signed-off-by: Ahmad Tameem <ahmad.tameem@10xengineers.ai>

---------

Signed-off-by: Ahmad Tameem <ahmad.tameem@10xengineers.ai>
Co-authored-by: moiz.hussain <moiz.hussain@10xengineers.ai>
Co-authored-by: Sharafat <sharafat.hussain@10xengineers.ai>
2023-09-01 16:27:40 +03:00
slaren
06abf8eeba
ggml : add view_src and view_offs to ggml_tensor for views (#2874)
* ggml : add view_src and view_offs

* update ggml-alloc to use view_src

* update ggml_diag_mask to work correctly with automatic inplace

* exclude other ops that set an inplace flag from automatic inplace
2023-08-29 23:24:42 +02:00
xaedes
44c117f41e
train : mem usage and other improvements (#2439)
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train

* remove unnecessary Adam(W) optimizer tensors.

reduces optimizer memory overhead from 7*modelsize to 2*modelsize.

additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t.

bumps training checkpoint file version, but old checkpoints can still be read.
new version with less tensors is saved.

* add gradient clipping to AdamW

* Fix reset of unused g->nodes and g->grads to NULL

* implement gradient checkpointing for training

reduces memory overhead from O(n_layer) to O(sqrt(n_layer))

as explained in readme of https://github.com/cybertronai/gradient-checkpointing

* remove unused compute buffer 3

* add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes

GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);

* change AdamW decay parameter to work like the torch AdamW decay parameter

It is now relative to Adam learning rate `alpha*sched`.
Before that it was relative to `sched` only.

`alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1]

* change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT

* change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW

btw: the default weight decay parameter for torch.optim.AdamW is 0.01

* bug fixes for cross entropy loss

ggml_cross_entropy_loss: sums where not correctly added in workload of each thread
ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues

guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16

cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup.
so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance.

* fix test-grad0 for cross_entropy_loss

the second argument to cross_entropy_loss must sum up to 1 for each row

* fix test-grad0 for soft_max

dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)

* improve finite differences of test-grad0 by using double instead of float

* change cross_entropy_loss to output average over all rows

this helps keeping the loss and gradients in a sane range

* improve gradient checkpointing

sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal.
since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different:

```
  given: n, u, v
  objective: minimize(a*u+b*v) where a*b=n, a>0, b>0
  b=n/a
  minimize(a*u+v*n/a)
  diff(a*u+v*n/a, a) = u - (v*n/a)/a
  diff(a*u+v*n/a, a) == 0
  u - (v*n/a)/a == 0
  u == v*n/(a*a)
  u*a*a = v*n
  a*a = v*n/u
  a = sqrt(n*v/u)
```

this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage.

* disable gradient checkpointing debug output

* llama : fix rope usage in train-text-from-scratch after ChatGLM change

* add more training parameters:

--enable-restart N         Only for Adam optimizer. Enable restarts of cos-decay
--disable-restart N        Only for Adam optimizer. Disable restarts of cos-decay
--opt-past N               Number of optimization iterations to track for delta convergence test. Disabled when zero.
--opt-delta N              Maximum delta for delta convergence test. Disabled when <= zero.
--opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero.
--adam-epsf N              AdamW epsilon for convergence test. Disabled when <= zero.
--adam-min-alpha N         Adam minimum learning rate alpha, usually 0.1 * alpha

* replace memcpy with reshape operation so that the graph is not cut at the input

this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it

* remove unused function argument from get_example_targets_batch

* measure and print total training time

* add optimization callback to ggml_opt_resume_g

this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)).

can be used for dynamic learning schedule and setting input data for batches before each iteration

* use optimization callback in training

allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters

reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration

* add minimum number of tensor dimensions to apply weight decay (default 2)

this allows to not apply weight decay to bias parameters

* rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup

* fix increase of model.train_samples and model.train_tokens

now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations

* change sampling parameters for prediction after training to defaults of common.h

and clarify what is context for prediction and what are generated tokens

* tighten abs error bounds for cross_entropy_loss in test-grad0

* add conditional compilation of using F16 exp in flash attention

uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention

* tighten abs error bounds for flash_attn in test-grad0

* tighten abs error bounds for sqrt in test-grad0

* remove out-commented vectorized code of opt_adam

the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead

* ggml : update ggml_rms_norm_back with configurable eps

* llama training : fix ggml_rms_norm_back calls to pass configurable eps

* remove trailing whitespace

* add train function using automatic gradient checkpointing backward pass and allocator

* in train function replace add_inplace by regular add

because using add_inplace seems to result in different gradients

* don't use allocate hash_map on context

because the context has no_alloc=True when using memory allocator resulting in NULL data pointers

* correctly clone reshape and permute operations by also cloning tensor->nb values

* fix variable name and add missing type cast

* terminate recursive tensor cloning when reaching tensor without src tensors

* correctly clone view tensors by setting data pointers

without this the checkpointing would only work when being used together with memory allocator

* fix variable names

* swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn`

* add input tensors as checkpoints

so that recursive tensor cloning of gradient checkpointing terminates on input tensors

* fix variable name and add missing boolean negation

* make sure some tensors are not reallocated by inserting new temporary nodes depending on them:

output and parameter gradient tensors need to be available at the end of the graph execution

parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration

checkpoint tensors are allocated all together to reduce memory allocator fragmentation

afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs

* fix ASSERT to work with zero layers

* add training options whether to use allocator and/or unified training function

* integrate unified training function which may use memory allocator

the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing

* format name of cloned tensors with " (clone)" suffix

* set names for tensors in unified train function for easier debugging

* allocate graph on context using ggml_new_graph

* remove handwritten training functions

* remove unused training parameters "use_scratch" and "use_unified"

* remove trailing whitespace

* remove unused train params: mem_compute1_gb & mem_compute2_gb

mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions
mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)

* remove unused forward_batch function

* add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly

* only use ggml_allocr_alloc when tensor has NULL data and is no view

* fix test when to create temporary backward graph

temporary backward graph is only necessary when using checkpointing

* fix memory "leak" in optimizers

each iteration a new cplan with new memory for work data was allocated.
now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data.

* reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator

with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory.

the computation results are the same

* add missing lctx argument to get_example_targets_batch

* implement llama model file saving using gguf

checkpoint loading and saving disabled, to be replaced by loading and saving via gguf

* implement loading/saving of checkpointing files using GGUF

* bug fixes

* add checkpoint file version for future compatibility

* update readme with gguf filenames

* save & load opt->just_initialized value

* add first draft for checkpoint conversion script

* add gguf arch and ftype

* save opt parameter counter as uint64

* add gguf key and tensor names for optimizer and training

* add layer_norm_rms_eps to checkpoint convert script

* use same GGUF_GET_KEY macro as in llama.cpp

* use norm_rms_eps, and rope parameters and command line options to set them

* fix memory corruption bug in gguf

ctx->kv and ctx->infos was reallocated using not-aligned realloc, but freed with aligned free.
to fix this a GGML_ALIGNED_REALLOC was added, but there is no posix_memalign_realloc function.
so on non-windows and non-mingw32 platforms we fall back to aligned malloc, followed by copying
and freeing the old data.

* add gguf example cmake file

* bug fixes in tokenize_file

* bug fixes in load_llama_model_gguf

* bug fix: init model when no checkpoint was loaded

* bug fix in read_tensor_by_name

* bug fix in load_opt_context_gguf

* avoid printing lots of spaced on the unusual case that loss gets nan

* set name of tensors with empty name from what was read from gguf

* remove trailing whitespace

* print data checksums before saving and after loading to verify correctness

* bug fixes for convert-train-checkpoint-to-gguf

* temporarily add code to write old checkpoint files

used to verify that old checkpoint files are correctly converted to gguf

* bug fixes for convert-train-checkpoint-to-gguf.py loading checkpoints with opt_version=0

* remove code used to verify correctness of checkpoint file conversion

* remove trailing whitespace

* remove prediction related code

use main for prediction, it is better optimized

* update train-text-from-scratch README.md

* fix non-windows GGML_ALIGNED_REALLOC

* add missing blank line at end of file

* remove GGML_ALIGNED_REALLOC and use normal malloc/realloc/free for gguf ctx->kv & ctx->infos

* train : fix compile warnings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-08-28 22:51:47 +03:00
Georgi Gerganov
35feac6560
ggml : sync (mem align to header + conv_transpose_2d fixes + ggml_alloc) (#2852)
* ggml : sync (mem align to header + conv_transpose_2d fixes)

ggml-ci

* ggml-alloc : minor fix

* ggml-alloc : sync more fixes
2023-08-28 14:24:53 +03:00
Georgi Gerganov
f55538c3cc
metal : fix memory leak (#2762)
* metal : fix memory leak

* metal : fix encoders memory leak

* metal : clean up more memory resources

* metal : fix more leaks

* metal : reuse dispatch queue + autoreleasepool

* metal : reuse array for command buffers and encoders

* ggml : assert for odd number of blocks on ARM

15M tinyllama is an example
2023-08-28 10:59:08 +03:00
Georgi Gerganov
103cfafc77
gguf : fix strings to not be null-terminated (#2839)
* gguf : fix strings to not be null-terminated

ggml-ci

* gguf : fix gguf_add_tensor name
2023-08-27 21:50:22 +03:00
Georgi Gerganov
d0cee0d36d
gguf : add 64-bit support (GGUF v2) (#2821)
* gguf : bump version to 2

* gguf : add support for 64-bit (no backwards comp yet)

* gguf : v1 backwards comp

* gguf.py : bump GGUF version

* gguf.py : uint64_t on all lengths, sizes and counts, enums still uint32_t

* gguf.py : string lengths uint32_t

* gguf : update all counts to 64-bit

* gguf.py : string len uint64_t and n_dims uint32_t

* gguf : fix typo

* llama.cpp : print gguf version

---------

Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
2023-08-27 14:19:54 +03:00
Przemysław Pawełczyk
1591e2e590
ggml : detect SSSE3 (#2825)
* ggml : add ggml_cpu_has_ssse3

* llama : show SSSE3 in system info
2023-08-27 11:10:25 +03:00
Georgi Gerganov
cf658adc83
llm : add Falcon support (#2717)
* llama : refactor GGUF constants into static maps

* llama : check if model architecture is known

* llama : refactor llama_model_load_internal()

* gguf : add KV constant maps

* llm : read arch-specific KVs

* convert : add dummy scores + types

* falcon : load tensor data (CPU only)

* llama : fix loading progress bar

* llama : add arch member to llama_model

* falcon : CPU inference working

* falcon : support non-40B models

* falcon : minor

* llama : minor updates

ggml-ci

* convert-falcon-hf-to-gguf.py : fix special token mapping

* llama.cpp : llama default UNK token = id 0

* llama.cpp : fix bpe tokenizer

* llama.cpp : fix the fix of bpe tokenizer

* ggml : pass eps to ggml_norm

* metal : implement RoPE (mode = 2) + avoid ggml_repeat

* ggml : ggml_repeat always creates new tensor

* falcon : copy-paste self-attention from LLaMA

* metal : print extra compute pipeline info

* falcon : minor changes (still chasing the Metal problem)

* llama.cpp : fix linefeed token

* metal : fix GELU kernel numerical stability by using precise::tanh

* metal : temporary workaround for the concurrency optimization bug

* falcon : add CUDA offloading (#2739)

* llama : better model naming and size reporting

* llama : prep new tokenizer support

* llama : advanced BPE tokenizer based on ggllm.cpp imlpementation

* llama : remove oboslete comment

ggml-ci

* common : remove obsolete BPE API + disable test-tokenizer-1

* llama : revert BPE special-case in llama_byte_to_token()

* cuda : add TODOs for RoPE NeoX implementation

* llama : default special tokens based on vocab type

* perplexity : add log for start of tokenization

---------

Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
2023-08-23 23:08:04 +03:00
Georgi Gerganov
ef3f333d37
ggml : sync latest (SAM + SD operators, CUDA alibi) (#2709)
* ggml : sync latest (SAM + SD operators, CUDA alibi)

ggml-ci

* ggml : fix tabs
2023-08-22 14:22:08 +03:00
Georgi Gerganov
6381d4e110
gguf : new file format with flexible meta data (beta) (#2398)
* gguf : first API pass

* gguf : read header + meta data

* gguf : read tensor info

* gguf : initial model loading - not tested

* gguf : add gguf_get_tensor_name()

* gguf : do not support passing existing ggml_context to gguf_init

* gguf : simplify gguf_get_val

* gguf : gguf.c is now part of ggml.c

* gguf : read / write sample models

* gguf : add comments

* refactor : reduce code duplication and better API (#2415)

* gguf : expose the gguf_type enum through the API for now

* gguf : add array support

* gguf.py : some code style changes

* convert.py : start a new simplified implementation by removing old stuff

* convert.py : remove GGML vocab + other obsolete stuff

* GGUF : write tensor (#2426)

* WIP: Write tensor

* GGUF : Support writing tensors in Python

* refactor : rm unused import and upd todos

* fix : fix errors upd writing example

* rm example.gguf

* gitignore *.gguf

* undo formatting

* gguf : add gguf_find_key (#2438)

* gguf.cpp : find key example

* ggml.h : add gguf_find_key

* ggml.c : add gguf_find_key

* gguf : fix writing tensors

* gguf : do not hardcode tensor names to read

* gguf : write sample tensors to read

* gguf : add tokenization constants

* quick and dirty conversion example

* gguf : fix writing gguf arrays

* gguf : write tensors one by one and code reuse

* gguf : fix writing gguf arrays

* gguf : write tensors one by one

* gguf : write tensors one by one

* gguf : write tokenizer data

* gguf : upd gguf conversion script

* Update convert-llama-h5-to-gguf.py

* gguf : handle already encoded string

* ggml.h : get array str and f32

* ggml.c : get arr str and f32

* gguf.py : support any type

* Update convert-llama-h5-to-gguf.py

* gguf : fix set is not subscriptable

* gguf : update convert-llama-h5-to-gguf.py

* constants.py : add layer norm eps

* gguf.py : add layer norm eps and merges

* ggml.h : increase GGML_MAX_NAME to 64

* ggml.c : add gguf_get_arr_n

* Update convert-llama-h5-to-gguf.py

* add gptneox gguf example

* Makefile : add gptneox gguf example

* Update convert-llama-h5-to-gguf.py

* add gptneox gguf example

* Update convert-llama-h5-to-gguf.py

* Update convert-gptneox-h5-to-gguf.py

* Update convert-gptneox-h5-to-gguf.py

* Update convert-llama-h5-to-gguf.py

* gguf : support custom alignment value

* gguf : fix typo in function call

* gguf : mmap tensor data example

* fix : update convert-llama-h5-to-gguf.py

* Update convert-llama-h5-to-gguf.py

* convert-gptneox-h5-to-gguf.py : Special tokens

* gptneox-main.cpp : special tokens

* Update gptneox-main.cpp

* constants.py : special tokens

* gguf.py : accumulate kv and tensor info data + special tokens

* convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens

* gguf : gguf counterpart of llama-util.h

* gguf-util.h : update note

* convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens

* convert-llama-h5-to-gguf.py : special tokens

* Delete gptneox-common.cpp

* Delete gptneox-common.h

* convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer

* gptneox-main.cpp : gpt2 bpe tokenizer

* gpt2 bpe tokenizer (handles merges and unicode)

* Makefile : remove gptneox-common

* gguf.py : bytesarray for gpt2bpe tokenizer

* cmpnct_gpt2bpe.hpp : comments

* gguf.py : use custom alignment if present

* gguf : minor stuff

* Update gptneox-main.cpp

* map tensor names

* convert-gptneox-h5-to-gguf.py : map tensor names

* convert-llama-h5-to-gguf.py : map tensor names

* gptneox-main.cpp : map tensor names

* gguf : start implementing libllama in GGUF (WIP)

* gguf : start implementing libllama in GGUF (WIP)

* rm binary commited by mistake

* upd .gitignore

* gguf : calculate n_mult

* gguf :  inference with 7B model working (WIP)

* gguf : rm deprecated function

* gguf : start implementing gguf_file_saver (WIP)

* gguf : start implementing gguf_file_saver (WIP)

* gguf : start implementing gguf_file_saver (WIP)

* gguf : add gguf_get_kv_type

* gguf : add gguf_get_kv_type

* gguf : write metadata in gguf_file_saver (WIP)

* gguf : write metadata in gguf_file_saver (WIP)

* gguf : write metadata in gguf_file_saver

* gguf : rm references to old file formats

* gguf : shorter name for member variable

* gguf : rm redundant method

* gguf : get rid of n_mult, read n_ff from file

* Update gguf_tensor_map.py

* Update gptneox-main.cpp

* gguf : rm references to old file magics

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : quantization is working

* gguf : roper closing of file

* gguf.py : no need to convert tensors twice

* convert-gptneox-h5-to-gguf.py : no need to convert tensors twice

* convert-llama-h5-to-gguf.py : no need to convert tensors twice

* convert-gptneox-h5-to-gguf.py : simplify nbytes

* convert-llama-h5-to-gguf.py : simplify nbytes

* gptneox-main.cpp : n_layer --> n_block

* constants.py : n_layer --> n_block

* gguf.py : n_layer --> n_block

* convert-gptneox-h5-to-gguf.py : n_layer --> n_block

* convert-llama-h5-to-gguf.py : n_layer --> n_block

* gptneox-main.cpp : n_layer --> n_block

* Update gguf_tensor_map.py

* convert-gptneox-h5-to-gguf.py : load model in parts to save memory

* convert-llama-h5-to-gguf.py : load model in parts to save memory

* convert : write more metadata for LLaMA

* convert : rm quantization version

* convert-gptneox-h5-to-gguf.py : add file_type key

* gptneox-main.cpp : add file_type key

* fix conflicts

* gguf : add todos and comments

* convert-gptneox-h5-to-gguf.py : tensor name map changes

* Create gguf_namemap.py : tensor name map changes

* Delete gguf_tensor_map.py

* gptneox-main.cpp : tensor name map changes

* convert-llama-h5-to-gguf.py : fixes

* gguf.py : dont add empty strings

* simple : minor style changes

* gguf : use UNIX line ending

* Create convert-llama-7b-pth-to-gguf.py

* llama : sync gguf-llama.cpp with latest llama.cpp (#2608)

* llama : sync gguf-llama.cpp with latest llama.cpp

* minor : indentation + assert

* llama : refactor gguf_buffer and gguf_ctx_buffer

* llama : minor

* gitignore : add gptneox-main

* llama : tokenizer fixes (#2549)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* convert : update convert-new.py with tokenizer fixes (#2614)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* Adapt convert-new.py (and fix a clang-cl compiler error on windows)

* llama : sync gguf-llama with llama (#2613)

* llama : sync gguf-llama with llama

* tests : fix build + warnings (test-tokenizer-1 still fails)

* tests : fix wstring_convert

* convert : fix layer names

* llama : sync gguf-llama.cpp

* convert : update HF converter to new tokenizer voodoo magics

* llama : update tokenizer style

* convert-llama-h5-to-gguf.py : add token types

* constants.py : add token types

* gguf.py : add token types

* convert-llama-7b-pth-to-gguf.py : add token types

* gguf-llama.cpp :  fix n_head_kv

* convert-llama-h5-to-gguf.py : add 70b gqa support

* gguf.py : add tensor data layout

* convert-llama-h5-to-gguf.py : add tensor data layout

* convert-llama-7b-pth-to-gguf.py : add tensor data layout

* gptneox-main.cpp : add tensor data layout

* convert-llama-h5-to-gguf.py : clarify the reverse permute

* llama : refactor model loading code (#2620)

* llama : style formatting + remove helper methods

* llama : fix quantization using gguf tool

* llama : simplify gguf_file_saver

* llama : fix method names

* llama : simplify write_header()

* llama : no need to pass full file loader to the file saver

just gguf_ctx

* llama : gguf_file_saver write I32

* llama : refactor tensor names (#2622)

* gguf: update tensor names searched in quantization

* gguf : define tensor names as constants

* gguf : initial write API (not tested yet)

* gguf : write to file API (not tested)

* gguf : initial write API ready + example

* gguf : fix header write

* gguf : fixes + simplify example + add ggml_nbytes_pad()

* gguf : minor

* llama : replace gguf_file_saver with new gguf write API

* gguf : streaming support when writing files

* gguf : remove oboslete write methods

* gguf : remove obosolete gguf_get_arr_xxx API

* llama : simplify gguf_file_loader

* llama : move hparams and vocab from gguf_file_loader to llama_model_loader

* llama : merge gguf-util.h in llama.cpp

* llama : reorder definitions in .cpp to match .h

* llama : minor simplifications

* llama : refactor llama_model_loader (WIP)

wip : remove ggml_ctx from llama_model_loader

wip : merge gguf_file_loader in llama_model_loader

* llama : fix shape prints

* llama : fix Windows build + fix norm_rms_eps key

* llama : throw error on missing KV paris in model meta data

* llama : improve printing + log meta data

* llama : switch print order of meta data

---------

Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>

* gguf : deduplicate (#2629)

* gguf : better type names

* dedup : CPU + Metal is working

* ggml : fix warnings about unused results

* llama.cpp : fix line feed and compiler warning

* llama : fix strncpy warning + note token_to_str does not write null

* llama : restore the original load/save session implementation

Will migrate this to GGUF in the future

* convert-llama-h5-to-gguf.py : support alt ctx param name

* ggml : assert when using ggml_mul with non-F32 src1

* examples : dedup simple

---------

Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>

* gguf.py : merge all files in gguf.py

* convert-new.py : pick #2427 for HF 70B support

* examples/gguf : no need to keep q option for quantization any more

* llama.cpp : print actual model size

* llama.cpp : use ggml_elements()

* convert-new.py : output gguf (#2635)

* convert-new.py : output gguf (WIP)

* convert-new.py : add gguf key-value pairs

* llama : add hparams.ctx_train + no longer print ftype

* convert-new.py : minor fixes

* convert-new.py : vocab-only option should work now

* llama : fix tokenizer to use llama_char_to_byte

* tests : add new ggml-vocab-llama.gguf

* convert-new.py : tensor name mapping

* convert-new.py : add map for skipping tensor serialization

* convert-new.py : convert script now works

* gguf.py : pick some of the refactoring from #2644

* convert-new.py : minor fixes

* convert.py : update to support GGUF output

* Revert "ci : disable CI temporary to not waste energy"

This reverts commit 7e82d25f40.

* convert.py : n_head_kv optional and .gguf file extension

* convert.py : better always have n_head_kv and default it to n_head

* llama : sync with recent PRs on master

* editorconfig : ignore models folder

ggml-ci

* ci : update ".bin" to ".gguf" extension

ggml-ci

* llama : fix llama_model_loader memory leak

* gptneox : move as a WIP example

* llama : fix lambda capture

ggml-ci

* ggml : fix bug in gguf_set_kv

ggml-ci

* common.h : .bin --> .gguf

* quantize-stats.cpp : .bin --> .gguf

* convert.py : fix HF tensor permuting / unpacking

ggml-ci

* llama.cpp : typo

* llama : throw error if gguf fails to init from file

ggml-ci

* llama : fix tensor name grepping during quantization

ggml-ci

* gguf.py : write tensors in a single pass (#2644)

* gguf : single pass for writing tensors + refactoring writer

* gguf : single pass for writing tensors + refactoring writer

* gguf : single pass for writing tensors + refactoring writer

* gguf : style fixes in simple conversion script

* gguf : refactor gptneox conversion script

* gguf : rename h5 to hf (for HuggingFace)

* gguf : refactor pth to gguf conversion script

* gguf : rm file_type key and method

* gguf.py : fix vertical alignment

* gguf.py : indentation

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* convert-gptneox-hf-to-gguf.py : fixes

* gguf.py : gptneox mapping

* convert-llama-hf-to-gguf.py : fixes

* convert-llama-7b-pth-to-gguf.py : fixes

* ggml.h : reverse GGUF_MAGIC

* gguf.py : reverse GGUF_MAGIC

* test-tokenizer-0.cpp : fix warning

* llama.cpp : print kv general.name

* llama.cpp : get special token kv and linefeed token id

* llama : print number of tensors per type + print arch + style

* tests : update vocab file with new magic

* editorconfig : fix whitespaces

* llama : re-order functions

* llama : remove C++ API + reorganize common source in /common dir

* llama : minor API updates

* llama : avoid hardcoded special tokens

* llama : fix MPI build

ggml-ci

* llama : introduce enum llama_vocab_type + remove hardcoded string constants

* convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested

* falcon-main.cpp : falcon inference example

* convert-falcon-hf-to-gguf.py : remove extra kv

* convert-gptneox-hf-to-gguf.py : remove extra kv

* convert-llama-7b-pth-to-gguf.py : remove extra kv

* convert-llama-hf-to-gguf.py : remove extra kv

* gguf.py : fix for falcon 40b

* falcon-main.cpp : fix for falcon 40b

* convert-falcon-hf-to-gguf.py : update ref

* convert-falcon-hf-to-gguf.py : add tensor data layout

* cmpnct_gpt2bpe.hpp : fixes

* falcon-main.cpp : fixes

* gptneox-main.cpp : fixes

* cmpnct_gpt2bpe.hpp : remove non-general stuff

* Update examples/server/README.md

Co-authored-by: slaren <slarengh@gmail.com>

* cmpnct_gpt2bpe.hpp : cleanup

* convert-llama-hf-to-gguf.py : special tokens

* convert-llama-7b-pth-to-gguf.py : special tokens

* convert-permute-debug.py : permute debug print

* convert-permute-debug-master.py : permute debug for master

* convert-permute-debug.py : change permute type of attn_q

* convert.py : 70b model working (change attn_q permute)

* Delete convert-permute-debug-master.py

* Delete convert-permute-debug.py

* convert-llama-hf-to-gguf.py : fix attn_q permute

* gguf.py : fix rope scale kv

* convert-llama-hf-to-gguf.py : rope scale and added tokens

* convert-llama-7b-pth-to-gguf.py : rope scale and added tokens

* llama.cpp : use rope scale kv

* convert-llama-7b-pth-to-gguf.py : rope scale fix

* convert-llama-hf-to-gguf.py : rope scale fix

* py : fix whitespace

* gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682)

* First pass at converting GGMLv3 LLaMA models to GGUF

* Cleanups, better output during conversion

* Fix vocab space conversion logic

* More vocab conversion fixes

* Add description to converted GGUF files

* Improve help text, expand warning

* Allow specifying name and description for output GGUF

* Allow overriding vocab and hyperparams from original model metadata

* Use correct params override var name

* Fix wrong type size for Q8_K

Better handling of original style metadata

* Set default value for gguf add_tensor raw_shape KW arg

* llama : improve token type support (#2668)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* Adapt convert-new.py (and fix a clang-cl compiler error on windows)

* Improved tokenizer test

But does it work on MacOS?

* Improve token type support

- Added @klosax code to convert.py
- Improved token type support in vocabulary

* Exclude platform dependent tests

* More sentencepiece compatibility by eliminating magic numbers

* Restored accidentally removed comment

* llama : add API for token type

ggml-ci

* tests : use new tokenizer type API (#2692)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* Adapt convert-new.py (and fix a clang-cl compiler error on windows)

* Improved tokenizer test

But does it work on MacOS?

* Improve token type support

- Added @klosax code to convert.py
- Improved token type support in vocabulary

* Exclude platform dependent tests

* More sentencepiece compatibility by eliminating magic numbers

* Restored accidentally removed comment

* Improve commentary

* Use token type API in test-tokenizer-1.cpp

* py : cosmetics

* readme : add notice about new file format

ggml-ci

---------

Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: goerch <jhr.walter@t-online.de>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
2023-08-21 23:07:43 +03:00
slaren
9e232f0234
ggml : move all type info to ggml_type_traits (#2663) 2023-08-20 22:17:53 +02:00
Georgi Gerganov
93356bdb7a
ggml : mul mat tweaks (#2372)
* ggml : mul mat wip

ggml-ci

* ggml : alternative thread distribution for mul_mat

ggml-ci

* ggml : mul_mat block tiling attempt

* ggml : mul_mat threads yield

ggml-ci
2023-08-07 14:25:58 +03:00
Georgi Gerganov
60baff7c85
ggml : pad result of ggml_nbytes() 2023-08-07 14:24:42 +03:00
Georgi Gerganov
9082b5dfbf
ggml : change params pointer (style change) (#2539)
ggml-ci
2023-08-07 13:55:18 +03:00
Georgi Gerganov
99d29c0094
ggml : sync (custom ops) (#2537)
ggml-ci
2023-08-07 13:20:09 +03:00
slaren
a113689571
ggml : add graph tensor allocator (#2411)
* ggml : add graph tensor allocator

* ggml : don't calculate data pointer of unallocated tensors when creating a view with an offset

* ggml : refactor ggml_view_Nd into ggml_view_tensor_offset
2023-07-30 15:58:01 +02:00
slaren
b5472ea0ad
ggml : fix assert in ggml_set_unary_op (#2410) 2023-07-26 23:57:23 +02:00
slaren
5488fb789e
ggml : allocate graphs in a context (#2392)
* ggml : graph allocation in contexts

* allocate work buffer as a ggml_object in ggml_graph_compute_with_ctx

* llama.cpp : allocate graph in the context

* add GGML_PAD

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-26 15:56:53 +02:00
slaren
07aaa0f63f
ggml : fix ggml_flash_attn to use op_params (#2387)
* ggml : fix ggml_flash_attn to use op_params
2023-07-25 16:20:12 +02:00
Jiahao Li
875086bdb9
ggml : relax contiguous constraints in activation function (#2371) 2023-07-25 15:58:32 +03:00
slaren
da1889834a
ggml : improve graph build time via hash table lookup (#2329)
* improve graph build time

* ggml_tensor : use 1 bit per flag

* use a hash table instead
2023-07-25 15:32:20 +03:00
slaren
41c674161f
make rms_norm_eps a parameter (#2374)
* make rms_norm_eps a parameter

* add rms_norm_eps to command line

* fix baby llama, test-grad0

* use scientific notation for eps param in the help

ggml-ci
2023-07-24 17:57:12 +02:00
Georgi Gerganov
5b2b2dc6ae
ggml : sync (unary ops refactor, static-correctness) (#2370)
* ggml : sync (unary ops, tests)

ggml-ci

* tests : remove unnecessary funcs
2023-07-24 14:46:21 +03:00
slaren
3602ac4255
fix n_tasks (#2342)
ggml-ci
2023-07-23 15:19:39 +02:00
slaren
95a6c595e7
ggml: move op parameters from tensors to ggml_tensor::op_params (#2333)
* ggml: move op parameters from tensors to ggml_tensor::op_params

* alibi: use memcpy for float params

* remove `src[1] = NULL` in ops
2023-07-23 14:36:02 +02:00
Georgi Gerganov
0db14fef06
ggml : fix the rope fix (513f861953) 2023-07-21 15:16:55 +03:00
Georgi Gerganov
513f861953
ggml : fix rope args order + assert (#2054) 2023-07-21 14:51:34 +03:00
Qingyou Meng
672dda10e4
ggml : fixed runtime bugs and compile errors related to GGML_PERF and GGML_DEBUG (#2219)
* fixed runtime bugs and compile errors related to GGML_PERF and GGML_DEBUG

* remove ifdef GGML_PERF; update fmt
2023-07-16 22:57:28 +03:00
Xiao-Yong Jin
6e7cca4047
llama : add custom RoPE (#2054)
* Implement customizable RoPE

The original RoPE has pre-defined parameters

theta_i = 10000^(−2(i−1)/d), for i in [1, 2, ..., d/2]

Our customizable RoPE, ggml_rope_custom_inplace, uses

theta_i = scale * base^(−2(i−1)/d), for i in [1, 2, ..., d/2]

with the default matches the original

scale = 1.0
base = 10000

The new command line arguments
--rope-freq-base
--rope-freq-scale
set the two new RoPE parameter.

Recent researches show changing these two parameters extends the context limit with minimal loss.

1. Extending Context to 8K
   kaiokendev
   https://kaiokendev.github.io/til#extending-context-to-8k

2. Extending Context Window of Large Language Models via Positional Interpolation
   Shouyuan Chen, Sherman Wong, Liangjian Chen, Yuandong Tian
   https://arxiv.org/abs/2306.15595

3. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation.
   https://www.reddit.com/user/bloc97
   https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/

For the bold, try adding the following command line parameters to your favorite model:
-c 16384 --rope-freq-base 80000 --rope-freq-scale 0.5

* ggml-metal: fix custom rope

* common: fix argument names in help

* llama: increase MEM_REQ_EVAL for MODEL_3B

It avoids crashing for quantized weights on CPU.
Better ways to calculate the required buffer size would be better.

* llama: make MEM_REQ_EVAL depend on n_ctx

* server: use proper Content-Type in curl examples

Without the header Content-Type: application/json, curl will POST with
Content-Type: application/x-www-form-urlencoded

Though our simple server doesn't care, the httplib.h used has a limit
with CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 8192

With Content-Type: application/json, we can send large json data.

* style : minor fixes, mostly indentations

* ggml : fix asserts

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-15 13:34:16 +03:00
Evan Miller
e8035f141e
ggml : fix static_assert with older compilers #2024 (#2218) 2023-07-14 21:55:56 +03:00
Georgi Gerganov
697966680b
ggml : sync (ggml_conv_2d, fix mul_mat bug, CUDA GLM rope) 2023-07-14 16:36:41 +03:00
Georgi Gerganov
975221e954
ggml : broadcast mul_mat + conv batch support (#2199)
* ggml : broadcast mul_mat + conv batch support

* ggml : apply mul_mat broadcast fix by @jploski
2023-07-12 20:51:29 +03:00
Georgi Gerganov
4523d10d0c ggml : add ggml_pool_1d and ggml_pool_2d 2023-07-12 20:32:15 +03:00
Georgi Gerganov
20d7740a9b
ggml : sync (abort callback, mul / add broadcast, fix alibi) (#2183) 2023-07-11 22:53:34 +03:00
Spencer Sutton
5bf2a27718
ggml : remove src0 and src1 from ggml_tensor and rename opt to src (#2178)
* Add ggml changes

* Update train-text-from-scratch for change

* mpi : adapt to new ggml_tensor->src

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-11 19:31:10 +03:00
clyang
3bbc1a11f0
ggml : fix buidling with Intel MKL but ask for "cblas.h" issue (#2104) (#2115)
* Fix buidling with Intel MKL but ask for "cblas.h" issue

* Use angle brackets to indicate the system library
2023-07-09 11:12:20 +03:00
Qingyou Meng
1d656d6360
ggml : change ggml_graph_compute() API to not require context (#1999)
* ggml_graph_compute: deprecate using ggml_context, try resolve issue #287

* rewrite: no longer consider backward compitability; plan and make_plan

* minor: rename ctx as plan; const

* remove ggml_graph_compute from tests/test-grad0.c, but current change breaks backward

* add static ggml_graph_compute_sugar()

* minor: update comments

* reusable buffers

* ggml : more consistent naming + metal fixes

* ggml : fix docs

* tests : disable grad / opt + minor naming changes

* ggml : add ggml_graph_compute_with_ctx()

- backwards compatible API
- deduplicates a lot of copy-paste

* ci : enable test-grad0

* examples : factor out plan allocation into a helper function

* llama : factor out plan stuff into a helper function

* ci : fix env

* llama : fix duplicate symbols + refactor example benchmark

* ggml : remove obsolete assert + refactor n_tasks section

* ggml : fix indentation in switch

* llama : avoid unnecessary bool

* ggml : remove comments from source file and match order in header

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-07 19:24:01 +03:00
Georgi Gerganov
7242140283 ggml : remove sched_yield() call in ggml_graph_compute_thread() (#2134) 2023-07-07 18:37:10 +03:00
Georgi Gerganov
ec326d350c
ggml : fix bug introduced in #1237 2023-07-05 20:44:11 +03:00
Stephan Walter
1b107b8550
ggml : generalize quantize_fns for simpler FP16 handling (#1237)
* Generalize quantize_fns for simpler FP16 handling

* Remove call to ggml_cuda_mul_mat_get_wsize

* ci : disable FMA for mac os actions

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-05 19:13:06 +03:00
Georgi Gerganov
ed9a54e512
ggml : sync latest (new ops, macros, refactoring) (#2106)
- add ggml_argmax()
- add ggml_tanh()
- add ggml_elu()
- refactor ggml_conv_1d() and variants
- refactor ggml_conv_2d() and variants
- add helper macros to reduce code duplication in ggml.c
2023-07-04 21:54:11 +03:00
Georgi Gerganov
46088f7231 ggml : fix build with OpenBLAS (close #2066) 2023-07-02 09:46:46 +03:00
Qingyou Meng
b1ca8f36a9
ggml : disable GGML_TASK_INIT and GGML_TASK_FINALIZE by default (#1995)
Will not be scheduled unless explicitly enabled.
2023-07-01 18:42:43 +03:00
Erik Scholz
9d23589d63
fix pthreads setaffinity usage on android (#2020) 2023-06-27 19:06:33 +02:00
Georgi Gerganov
d9779021bd
ggml : add support for ChatGLM RoPE 2023-06-27 00:06:51 +03:00
Georgi Gerganov
c824d2e368
ggml : avoid conv 2d kernel round up 2023-06-26 21:03:59 +03:00
zrm
b853d45601
ggml : add NUMA support (#1556)
* detect NUMA systems and pin work threads to nodes (linux)

* disable mmap prefetch/readahead for NUMA systems

* avoid sending finalize op to thread pool if it does nothing

* silence robot

* fix args

* make --numa a param

* recommendation that n_nodes evenly divide n_threads did not warrant such aggressive enforcement

* lower synchronization overhead

* statically allocate

* move numa state to g_state

* add description for --numa

* ggml : minor style changes

* ggml : minor style + try fix sanitizer build

* llama : allow to initialize backend with NUMA support

* llama : avoid ggml include in llama-util.h

* ggml : style / formatting

* ggml : fix handling of ops with n_threads > n_tasks > 1

* server : utilize numa parameter

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-26 20:57:59 +03:00
Georgi Gerganov
bd34cdde38
ggml : sync latest ggml (custom operators) 2023-06-25 14:25:08 +03:00
Robyn
5ec8dd5a3c
#1869 Fix null reference errors when training from scratch with CUDA (#1907)
* #1869 Fix null reference errors when training from scratch with CUDA build

Calling ggml_compute_forward when node->src0 was null was causing train-text-from-scratch.exe to terminate unexpectedly.

* ggml : do not dereference src0 if NULL

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-24 20:10:29 +02:00
slaren
f2c754e1c3
ggml : improve ggml_graph_dump_dot, add ggml_format_name (#1978)
* Improve ggml_graph_dump_dot, add ggml_format_name

* add more automatic names to view ops

* fix name of copies
2023-06-24 13:57:18 +03:00
Georgi Gerganov
18b35625c3
ggml : fix bug in LBFGS optimizer (found by ggml tests) 2023-06-19 20:43:30 +03:00
Georgi Gerganov
b97ca431db
ggml : sync latest ggml repo (#1924)
* ggml : sync latest ggml repo

* ggml : remove unused comments

* ggml : asserts
2023-06-19 18:12:33 +03:00
l3utterfly
8596af4277
ggml : fix bug in ggml_compute_forward_add_q_f32 (#1918) 2023-06-18 14:19:16 +03:00
Georgi Gerganov
ce2c7d72e2
metal : handle buffers larger than device's maxBufferLength (#1826)
* metal : handle buffers larger than device's maxBufferLength

* metal : print more verbose device info + handle errors

* metal : fix prints for overlapping views

* metal : minimize view overlap to try to utilize device memory better
2023-06-18 09:09:47 +03:00
Borislav Stanimirov
9cbf50c041
build : fix and ignore MSVC warnings (#1889) 2023-06-16 21:23:53 +03:00
Johannes Gäßler
254a7a7a5f
CUDA full GPU acceleration, KV cache in VRAM (#1827)
* Fixed CUDA RoPE

* ggml_cuda_mul_mat_vec_p021

* ggml_cuda_scale

* ggml_cuda_diag_mask_inf

* ggml_is_permuted

* ggml_cuda_cpy

* flatten rows for ggml_cuda_op

* Added a --low-vram option

* Fixed Windows performance

* Fixed LLAMA_CUDA_DMMV_Y > 1 for WizardLM
2023-06-14 19:47:19 +02:00
xaedes
e32089b2c2
train : improved training-from-scratch example (#1652)
* add python wrapper

https://gist.github.com/abetlen/2b90e5f153f6efd00931d098de5c73ce

* fix decoding error. adds errors=ignore parameter

* add python bindings for functions to get and set the whole llama state
(rng, logits, embedding and kv_cache)

* update python bindings

* add text generating baby-llama from scratch example

* fix race condition bug in ggml_compute_forward_diag_mask_f32

* implement ggml_soft_max_back for more performant backward pass of soft_max

avoids creating big intermediate matrices of size n_embd x n_embd for llama layers and n_vocab x n_vocab for cross entropy loss

* improve softmax backward pass

go from quadratic runtime to linear runtime by simplifying the formulas

* fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32

memcpy needs to be synchronized across threads to avoid race conditions.
=> do it in INIT phase

* fix bug in ggml_compute_forward_soft_max_back_f32 on DEBUG build

* improve performance of mul_mat backward pass

avoid transpose by using mul_mat with swapped arguments

* avoid printing too much newlines in baby-llama-text

* activate threading in baby-llama-text

* add ggml_out_prod and use it for mul_mat backward pass for improved performance

performance stats report improvement from 37 seconds to 16 seconds runtime during my training tests

* better weight initialization improves training convergence at start

* better weight initialization improves training convergence at start

* improve ggml_out_prod performance

- change iteration order (>15s -> 10s runtime)
- parallelize over one more dimension: over dst matrix rows (10s -> <5s runtime)

* add llama sampler, shuffle samples and constrain sampling to tokens occurring in train data

* fix get_samples call, add model tensor names, increase model size, start training samples after newline

* save train trained model to checkpoint and load model to be trained from checkpoint

* use inplace functions where possible

* initialize rng with srand

* use different arguments for input and output checkpoint

* ggml fixes to support backward pass on inplace operations

* remove duplicate include

* fix cross entropy loss

- add target probabilities for each sample which is then used in cross entropy loss

* print used memory before and after optimization

* sample with non-greedy sampling parameters at the end of training

* add cmake target for baby-llama-text

* add ggml_add1_inplace to header

* enable gradient propagation for inplace add1 and scale operations

those functions backward passes don't need the original src0, so they also work when forward is inplace

* implement AdamW in ggml_opt_adam by adding weight decay parameter (default 0.001f)

also add a schedule parameter (default 1.0f) that can be used to scale alpha and decay according to learning schedule.
setting the decay parameter to zero disables AdamW resulting in normal Adam optimizer.

since the difference between Adam and AdamW is minimal it is not implemented as another optimizer, but integrated into the existing Adam optimizer.

* use inplace operations in cross_entropy_loss

* fix random weight initialization scale

* add missing default parameters for adam optimizer

* add ggml_opt_context, so that we can properly resume training

otherwise the optimizer states, tracking statistics about the error function and its derivates,
will reset to zero each time ggml_opt is called, hindering convergence on resumed training.

now the optimizer context and all its memory is stored in a separate struct.

* fix bug in llama_sample_token_mirostat_v2

when all candidates are filtered out through mu threshold, the following soft_max operation will fail.
so keep at least one.

* add forward function without using cache, for more performant training

during training on whole samples no cache is required.
removing the cache and simplifying the remaining code results in performance and memory usage improvement.

* print suppressed newline tokens as string "\n"

printing too much actual newlines is suppressed to avoid flooding the console.

* store optimizer state in training checkpoint and add learning schedule

persistent optimizer state allows to resume training without resetting the optimizer
learning schedule consists of linear warmup ramp followed by cosine decay with restarts

* remove unused functions

* fix bug in get_samples which corrupted training targets

* save checkpoint only when it was trained

* simplify code

* remove trailing whitespace

* simplify backward pass for SQRT

* replace inefficient repeat backward pass with dedicated repeat_back operation

* add ggml_cross_entropy_loss with backward pass for faster training

cross entropy loss can also be implemented using softmax and log, but as dedicated operation it is faster and especially avoids unnecessary memory overhead.

* add tests for cross_entropy_loss backward pass

finite differences regularly results in estimated gradient of zero, despite the backward pass giving non zero gradient.
_probably_ the finite differences fails due to numerical issues

* use ggml_cross_entropy_loss in text training example

* remove trailing whitespace

* slightly improve how cross entropy loss is compute

btw: directly implemented cross entropy loss seems to have way lower magnitudes than when implemented with softmax and log.
probably the input to log gets closer to zero due to float numerics.
maybe the multiplication by (1.0-eps)/sum is more accurate..

* add llama_get_vocab to get the vocabulary as output parameters

* set default model.type for unknown models with few layers

* add export of training checkpoint to llama compatible model file

* get vocabulary for exporting training checkpoint to llama compatible model file

* implement backward pass of flash attention

* bugfixes for backward pass of flash attention

* test flash attention backward pass

need to set loose error bounds to pass.
the finitie differences are close to numeric limits and often return quite different values than the backward pass.
reducing eps further lets the gradients vanish completely.
likewise setting eps to big results in wronger values.
the softmax in the middle of the function is probably the most responsible for the numeric issues using finite differences.

* add option to train with flash attention and move options to the top of the main function

training from scratch also works with flash attention
training convergence and generation results after fix number of iterations are worse than when not using flash attention.
maybe there still lingers a bug in the flash attention backward pass?
but training works, just with slower convergence.

flash attention is still worth to use, because it requires way less memory and is faster with high n_ctx

* add train_params and command line option parser

* remove unnecessary comments

* add train params to specify memory size

* remove python bindings

* rename baby-llama-text to train-text-from-scratch

* replace auto parameters in lambda function

* add #include <climits>

* add explicit cast to fix compile error

"error: non-constant-expression cannot be narrowed from type 'int64_t' (aka 'long long') to 'uint32_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]"

* remove trailing whitespace

* add ggml_opt_resume_g which accepts forward and backward cgraphs

* fix formulas in comments

* bug fix for ggml_compute_forward_get_rows_back_f32

the result should be set to zero, not to whatever data is in opt0

* improve training memory usage with scratch buffers

instead of relying on the automatic backward pass, we manually create the graph for the backward pass.
it turns out that all backward pass operations need only temporary memory which can be reused after each layer.

will compute backward pass for ALL model parameters

* add option to use scratch buffers in training or not

make it configurable because currently training with scratch buffers implies flash attention and optimization over all parameters.

* ci : disable temporary

* store view offset and permute axes in opt[0] instead of storing it in padding

use memcpy to store offset, because offset is of type size_t.
when storing it as int32_t offset would have to be smaller than 2^31 which is not necessarily true.

* minor : fix compile warnings + minor style changes

* fix bug in threaded indices calculation of ggml_compute_forward_flash_attn_back_f32

* store view offset like in master branch

* bug fix in forward_batch_wo_cache_flash_attn_train

* scratch buffer bug fixes in forward_batch_wo_cache_flash_attn_train

data of permute and reshape is the same as their input.
if we want to preserve the output of permute/reshape, we also need to preserve their inputs.

replace reshape(src0, src1) with reshape_nd calls so that we don't need src1.

replace (temporary) t03 with ggml_repeat(ctx0, layer.attention_norm, t02).
in the future we could also use the new broadcasting ggml_mul to avoid these repeat calls.
for this we need backward pass of broadcasting ggml_mul.

* remove unnecessary scratch buffer 0

buf 0 is persistent memory, so we can just disable scratch for this by using buf -1

* avoid creating unnecessary grad tensors

previously we need to create grads for model parameters, so that expand(..) correctly populates cgraph->leafs & cgraph->grads
this wasted memory, because unnecessary grad for each op were automatically created:
the automatically generated grad was unnecessary because we later manually set the grad (e.g. t35->grad = expand(gb, ...) ).
this discarded the automatically generated grad resulting in wasted memory.

improved this by changing expand(..) to not use ggml_build_forward_expand.
expand set cgraph->nodes but not the leafs.
cgraph->leafs & cgraph->grads are set in another pass after the last expand call.

* print used training seed

* zero initialize gfbuf and gbbuf

* ci : re-enable workflows + add README for training

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-13 22:04:40 +03:00
Kerfuffle
74d4cfa343
Allow "quantizing" to f16 and f32 (#1787)
* Allow "quantizing" to f16 and f32

Fix an issue where quantizing didn't respect LLAMA_NO_K_QUANTS

Add brief help to the list of quantization types in the quantize tool

Ignore case for quantization type arguments in the quantize tool
2023-06-13 04:23:23 -06:00
Georgi Gerganov
17c10acfb4
ggml : force no_alloc == false when creating opt tensors (close #1699)
This is needed to make operators like ggml_view() be able to store their
parameters in the ggml context's memory and not get discarded when
no_alloc is true
2023-06-10 12:08:15 +03:00
Xingchen Song(宋星辰)
ef3171d162
ggml : workaround for missing _mm256_setr_m128i in GCC < 8 (#1638) 2023-06-10 10:49:40 +03:00
Steven Roussey
b50b570ed9
ggml : fix fprintf warnings (#1720) 2023-06-08 10:12:28 +03:00