Commit Graph

9 Commits

Author SHA1 Message Date
Francis Couture-Harpin
04eec58112 ggml : remove q1_3 and q2_2
* llama : remove the separate scale tensors of BitNet b1.58

They won't be needed, since the remaining ternary quant types have
built-in scales.
2024-08-02 20:16:26 -04:00
Francis Couture-Harpin
79a278e922 Merge branch 'master' into compilade/bitnet-ternary 2024-07-28 21:27:33 -04:00
Xuan Son Nguyen
97bdd26eee
Refactor lora adapter support (#8332)
* lora: load to devide buft

* add patch tensor function

* correct tensor patch

* llama_lora_adapter_apply

* correct ggml_backend_tensor_copy

* add llm_build_mm

* fix auto merge

* update based on review comments

* add convert script

* no more transpose A

* add f16 convert

* add metadata check

* add sanity check

* fix ftype

* add requirements

* fix requirements

* fix outfile

* conversion: only allow selected models

* fix types

* cuda : do not use dmmv if the tensor does not have enough cols

* llama : lora fixes

* do not disable mmap with lora

Co-authored-by: slaren <slarengh@gmail.com>

* llm_build_lora_mm_id

* convert_lora : MoE LoRA conversion support

* convert_lora : prefer safetensors, similarly to convert_hf

* convert_hf : simplify modify_tensors for InternLM2

* convert_lora : lazy conversion

* llama : load and use alpha from LoRA adapters

* llama : use llm_build_lora_mm in most model graphs

* auto scale

* Revert "auto scale"

This reverts commit 42415a4874.

* remove redundant params

* Apply suggestions from code review

Co-authored-by: slaren <slarengh@gmail.com>

* change kv metadata

* move add_type to __init__

* convert_hf : move add_type to main()

* convert_lora : use the GGUFWriter from Model instead of overwriting it

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2024-07-15 20:50:47 +02:00
Francis Couture-Harpin
0996149911 convert-hf : allow converting the weird BitNet 1.3B
Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.
2024-06-27 02:06:28 -04:00
Francis Couture-Harpin
89dc3b254c ggml-quants : use ceiling division when quantizing q1_3 2024-06-27 02:06:28 -04:00
Francis Couture-Harpin
7ef4254a92 ggml-quants : faster 1.625 bpw AVX2 vec_dot
Not using a lookup table anymore makes it match q4_0 speed.

* gguf-py : fix formatting

* llama : remove spaces on empty line
2024-06-27 02:06:28 -04:00
Francis Couture-Harpin
bd807499f7 ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b 2024-06-27 02:06:22 -04:00
compilade
b83bab15a5
gguf-py : fix and simplify quantized shape round-trip (#7483)
* gguf-py : fix and simplify quantized shape round-trip

* gguf-py : remove unused import
2024-05-25 11:11:48 +10:00
compilade
ee52225067
convert-hf : support direct Q8_0 conversion (#7234)
* convert-hf : support q8_0 conversion

* convert-hf : add missing ftype

This was messing with the checksums otherwise.

* convert-hf : add missing ftype to Baichuan and Xverse

I didn't notice these on my first pass.
2024-05-13 14:10:51 -04:00