Commit Graph

151 Commits

Author SHA1 Message Date
Georgi Gerganov
31109ca00a
Merge branch 'master' into gg/flash-attn 2024-02-19 12:58:18 +02:00
Kawrakow
bd2d4e393b
1.5 bit quantization (#5453)
* iq1_s: WIP basics

* iq1_s: CUDA is working

* iq1_s: scalar CPU dot product

* iq1_s: WIP AVX2 dot product - something is not right

* Fix tests

* Fix shadow warnings

* Fix after merge with latest master

* iq1_s: AVX2 finally works

* iq1_s: ARM_NEON dot product. Works, but not very fast

* iq1_s: better grid

* iq1_s: use IQ2_XXS for attn_output

At a cost of 0.04 extra bpw this gives a big improvement in PPL.

* iq1_s: Metal basics

Dequantize works, but not dot product

* iq1_s: Metal works, but quite slow

As usual, Apple Silicon does not like the code I write.

* iq1_s: Tests

* iq1_s: slightly faster dot product

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-18 18:16:55 +02:00
Georgi Gerganov
8f1be0d42f
ggml : add ALiBi support for ggml_soft_max_ext (#5488)
* ggml : avoid recomputing alibi slopes (CPU)

* llama : reuse hparams.f_max_alibi_bias in all cases

ggml-ci

* ggml : support alibi bias in ggml_soft_max_ext (CPU + Metal)

ggml-ci

* ggml : handle all SRCs (do not break on first null)

ggml-ci

* tests : do not use slope for large soft_max

accumulates too much error

ggml-ci

* ggml : alternative ALiBi without extra tensor

We compute the slopes in the kernel

ggml-ci

* cuda : add ALiBi support in ggml_soft_max_ext

ggml-ci

* ggml : deprecate ggml_alibi

* ggml : support multi-sequence ALiBi (Metal)

ggml-ci

* cuda : add multi-seq ALiBi + remote F16 soft_max

ggml-ci

* ggml : update deprecation message

* ggml : fix pos ptr when no ALiBi

ggml-ci

* cuda : fix performance (pow -> powf)

* cuda : precompute ALiBi constants

* metal : pre-compute ALiBi slopes

ggml-ci

* llama : init kq_pos only if needed

ggml-ci

* test-backend-ops : add null pos test to soft_max

test-backend-ops : replace soft_max tests

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-17 23:04:16 +02:00
Ananta Bastola
6e4e973b26
ci : add an option to fail on compile warning (#3952)
* feat(ci): add an option to fail on compile warning

* Update CMakeLists.txt

* minor : fix compile warnings

ggml-ci

* ggml : fix unreachable code warnings

ggml-ci

* ci : disable fatal warnings for windows, ios and tvos

* ggml : fix strncpy warning

* ci : disable fatal warnings for MPI build

* ci : add fatal warnings to ggml-ci

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-17 23:03:14 +02:00
Georgi Gerganov
6875997fd6
Merge branch 'master' into gg/flash-attn 2024-02-12 21:16:58 +02:00
Ian Bull
f026f8120f
metal : use autoreleasepool to avoid memory leaks (#5437)
There appears to be a known memory leak when using the
`MLTCommandBuffer`. It is suggested to use `@autoreleasepool` in
[1,2]

[1] https://developer.apple.com/forums/thread/662721
[2] https://forums.developer.apple.com/forums/thread/120931

This change-set wraps the `ggml_metal_graph_compute` in a
`@autoreleasepool`.

This commit addresses https://github.com/ggerganov/llama.cpp/issues/5436
2024-02-10 12:53:28 +02:00
Georgi Gerganov
cda5a60a41
metal : optimize softmax 2024-02-01 21:05:31 +02:00
Georgi Gerganov
8ad92dc1ec
ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext 2024-01-31 20:39:29 +02:00
Georgi Gerganov
2ddc9bbef1
Merge branch 'master' into gg/flash-attn 2024-01-31 18:49:43 +02:00
Georgi Gerganov
efb7bdbbd0
metal : add im2col F32 dst support (#5132) 2024-01-31 15:35:41 +02:00
Georgi Gerganov
3d03bcb7af
Merge branch 'master' into gg/flash-attn 2024-01-30 21:49:13 +02:00
Georgi Gerganov
549a1e6cd5
ci : fix yolo URLs + fix metal capture (ggml/712) 2024-01-30 16:20:25 +02:00
Jack Mousseau
5f14ee0b0c
metal : add debug capture backend function (ggml/694)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-30 16:20:25 +02:00
Kawrakow
f4d7e54974
SOTA 3-bit quants (#5196)
* iq3_xxs: quantize/dequantize

RMSE seems a bit high-ish at about half-way between q2_K and
q3_K, so need to check more.

* iq3_xxs: CUDA dequantize works

* iq2_xxs: tuning quantization

* iq3_xxs: starting to look better

PPL on wiki.test.raw
LLaMA-v1-7B: 6.4218
LLaMA-v2-7B: 6.3560
Mistral-7B : 6.0717

This is better than Q3_K_XS, with a 5% reduction in quantized model
size.

* iq3_xxs: CUDA dot product

We have
PP-512: 5891 t/s
TG-128: 143.9 t/s

* iq3_xxs: scalar and AVX2 dot products

* iq3_xxs: ARM_NEON and Metal

Metal performance is decent, ARM_NEON is pathetic

* iq3_xxs: slightly better grid points

* Faster iq3_xxs and iq2_xs dot products on CUDA

* iq3_xxs: add some quant mix

* iq3_xxs: fix failing quantization test

Dot product still fails. Is this real?

* iq3_xxs: hopefully fix ROCm

* iq3_xxs: failing tests

This time the dot product accuracy did find an actual bug
in the AVX2 implementation.

* Add IQ3_XXS to test-backend-ops

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-30 15:14:12 +02:00
Georgi Gerganov
c6c1132e5e
tests : more 2024-01-29 18:22:28 +02:00
Georgi Gerganov
abeaf0d90e
metal : disable buffer allocation logs 2024-01-29 18:12:24 +02:00
slaren
fbe7dfa53c
ggml : add max buffer sizes to opencl and metal backends (#5181) 2024-01-29 10:05:13 +02:00
Georgi Gerganov
1db22d7032
metal : support Q > 8 2024-01-28 23:16:20 +02:00
Georgi Gerganov
0ad44baf33
Merge branch 'master' into gg/flash-attn 2024-01-28 21:53:51 +02:00
Paul Tsochantaris
d2f650cb5b
metal : free metal objects (#5161)
* Releasing MTLFunction references after Metal pipeline construction

* Keeping the `ggml_metal_kernel` structure

* Spacing fix

* Whitespace fix
2024-01-28 21:50:16 +02:00
0cc4m
2307523d32
ggml : add Vulkan backend (#2059)
* Vulkan loader code

* Fix matmul kernel, continue implementation

* Continue implementation

* Vulkan memory management

* Vulkan development

* Matmul call

* Add aligned malloc and free for VMA

* Continue implementation

* First matmul success

* GEMM Kernel optimization

* 1D Blocktiling

* 2D Blocktiling

* Write coalescing

* Continue vulkan implementation and optimization

* First FP16 attempt, disabled for now

* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel

* Enable device extensions properly, restore fp16 matmul op

* Fix mulmat_f16

* Output FP32 in fp16 matmul shader

* Fix f16_to_f32 kernel

* dequant_q4_0 kernel

* Add VMA library

* Avoid requesting dedicated memory, VMA can decide that by itself

* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly

* add cmake commands

* Add 2d write operation, profiling code

* Fix 2d write

* Fix queue selection for AMD RADV

* Fix trailing whitespace in vk_mem_alloc.h

* Add WIP warp tile mat mul shaders

* Disable glslc optimization

* Disable glslc optimization for CMake

* Optimize warptile matmul shader, replace blocktile with it

* Add split-k optimization for small matrix multiplication

Use semaphores for synchronization instead of fences or waitidle

Rework async write/read for synchronization

* Fix validation errors, improve compatibility with AMD GPUs

* Rework command buffer handling

* Variable matmul kernel using specialization constants

* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints

* Reuse semaphores

* Handle stage flags during command buffer submission properly

* Increase matmul test runs for consistent results

* Fix F32 matmul

* Add vectorized loading and zeropadding for matrix multiplication

* Use pinned memory for f16 preprocessing

* Don't force aligned matmul

* Don't free before queue done

* Replace VMA library with native Vulkan buffer management

* Basic offloading support with mul_f32 and dmmv for q4_0

* Run glslc commands in parallel

* Unroll loops in dmmv shader

* Reduce usage of waitIdle

* Reuse pinned allocation for f16 conversion

* Handle devices with only a single queue

* Fix trailing whitespace in CMakeLists.txt

* Allow parallel execution of kernels, parallelize third and fourth dimension calls

* Add fallback for devices only supporting one DescriptorSet per DescriptorPool

* Move to graph function similar to CUDA implementation

* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function

* Add F32 dmmv shaders

* Batch submissions

* Add .spv to gitignore

* Split off matrix vector multiplication for separate optimization

* Use single command buffer for matrix vector multiplication ops

* Reduce overhead of mul_f32 calls by using a single command buffer

* Add submission batching to mul_f32

* Fix tests

* Add missing barrier

* Add further missing barrier

* Add further ops

* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions

* Remove unnecessary cblas link

* Fix descriptor set pre-allocation assert

* Add runtime shader compilation, start transferring shaders to this approach

* Transfer remaining shaders to header and compile on runtime

* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16

* Add support for q4_1, q5_0, q5_1 and q8_0

* Remove unnecessary scalar layout extension

* Parse graph early to pre-record command buffers

* Add q6_k support

* Add multi-submit for command buffers

* Fix q6_k dequant shader for AMD

* Fix q6_k for GPUs without fp16 support

* Simplify q6_k fp16 fix

* Minor fixes

* Fix wg_denom of m-mulmat shaders

* Add Python-based Vulkan shader generator

* Replace shaderc dependency with precompiled shaders

Fix python script to generate shaders

* Clean up code

* Fix shader generator script Windows compatibility

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>

* Close file before deletion

* Fix vulkan shader fp32 name

* Add q2_k and q3_k support

Add validation check to compare shader results to cpu results

* Add q4_k support

* Add q5_k support

* Bake SPIR-V bytecode into the library instead of loading shaders from file

* Switch to signal semaphores for flexibility

Prepare broadcasting support for mul mat

* Finish broadcasting mul mat support for GQA

* Clean up unused functions

Add repeat op

* Add further ops, not yet enabled. Improve semaphore code

* Reduce number of used semaphores by utilizing timelines more properly

* Remove queue information

* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations

* Add Vulkan to llama-bench

* Remove cblas dependency

* Fix matmul k-split bug

* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader

* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug

* Fix issues with float16 overflows in shaders

* Fix issues with older Vulkan headers on Ubuntu 22.04

* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers

* Implement further ops, rework op_f32 calls, fix bugs

* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code

* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders

* Merge upstream changes, fix conflicts, adapt soft_max op

* Fix Python and shader header format

* Free model gpu buffers on exit

* Use single queue per device to simplify code

* Add matmul shader support for running multiple calculations in parallel

* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible

* Fix missing event cast

* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity

* Fix warning about empty C function parameters

* Fix compiler warnings

* Properly implement Vulkan backend buffer handling

* Fix oversized host staging buffers

* Simplify barrier synchronization calls

* Fix gcc warnings

* Implement max_size for backend buffer types to limit the size of a single allocation

* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size

* refactor multi buf

* Disable unsupported ops to fix tests

* Check for maintenance4 support before using it

* Handle devices with only a single queue

* Fix single queue logic

* propagate buffer usage in multi buffers

* Implement rope_neox op

* Cleanup header and other files

* Simplify gpu_extras by removing events and putting staging memcpys into contexts

* Move queue into context

Add not-yet-enabled async backend ops

* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization

* Add get_max_size to SYCL backend.

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : fix trailing whitespace

---------

Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 19:03:59 +02:00
Georgi Gerganov
ecc466a460
metal : add tests, fix scaling, support C > 32 2024-01-28 16:06:18 +02:00
Georgi Gerganov
77f6976a87
metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
2024-01-28 15:30:24 +02:00
Georgi Gerganov
b3dd7d975f
Merge branch 'master' into gg/flash-attn 2024-01-28 10:54:11 +02:00
Paul Tsochantaris
6dd3c28c9c
metal : remove unused n_buffers and buffers (#5129) 2024-01-26 14:16:07 +02:00
Georgi Gerganov
6fea843b24
metal : add parallel reduce version (disabled) 2024-01-25 18:09:30 +02:00
Georgi Gerganov
f9ca5dcbe8
llama : avoid ggml_cast, use F32 query 2024-01-25 17:46:07 +02:00
Georgi Gerganov
1446a12b29
metal : efficient flash_attn_f16 implementation 2024-01-25 13:40:31 +02:00
Georgi Gerganov
ddc5a5033f
metal : show compile log messages 2024-01-25 11:26:17 +02:00
Georgi Gerganov
26d607608d
metal : disable support for MUL_MAT F32 x F16 2024-01-23 15:50:56 +02:00
Georgi Gerganov
17720fad66
metal : parallel reduce across heads 2024-01-21 23:01:46 +02:00
Georgi Gerganov
77d08f3272
metal : parallelize across KV size 2024-01-21 22:26:45 +02:00
Georgi Gerganov
a4b6341c7b
wip : template for rows per warp 2024-01-21 19:06:30 +02:00
Georgi Gerganov
f31955f5d1
wip : 4 rows per simd group 2024-01-21 18:01:28 +02:00
Georgi Gerganov
8cde449b8b
wip : 8 rows per simd group 2024-01-21 17:37:24 +02:00
Georgi Gerganov
b97325800a
metal : specialize for head size 2024-01-21 12:01:55 +02:00
Georgi Gerganov
528da7515e
metal : f16 precision 2024-01-21 11:13:24 +02:00
Georgi Gerganov
1173f49c3b
metal : initial implementation 2024-01-21 10:15:02 +02:00
Georgi Gerganov
a9681febd6
ggml : online attention (CPU) 2024-01-20 16:45:41 +02:00
Georgi Gerganov
a1c004ef2e
ggml : add ggml_flash_attn_ext API 2024-01-18 18:55:48 +02:00
Paul Tsochantaris
1e605f4102
metal : fix memory leak, dangling pointer and unused autorel (#5007)
* Metal memory: Small memory leak on init, dangling pointer, and unused autorelease pool in graph compute

* SPM header potential fix

* Reverting symlinks
2024-01-18 10:47:24 +02:00
Georgi Gerganov
c918fe8dca
metal : create autorelease pool during library build (#4970)
* metal : create autorelease pool during library build

ggml-ci

* test : simplify

ggml-ci
2024-01-17 18:38:39 +02:00
Paul Tsochantaris
7563293665
metal : remove unnecessary nil check (#4986) 2024-01-17 10:07:24 +02:00
Paul Tsochantaris
158f8c9e21
metal : localized logic in ggml_metal_graph_compute (#4924)
* Metal: Localized logic in `ggml_metal_graph_compute`, minor performance improvement

* Whitespace

* Collecting command buffer completions on single thread

* Whitespace

* Reduce diff noise
2024-01-16 19:05:19 +02:00
Alex Azarov
3a48d558a6
metal : replace loop of dispatch_async with dispatch_apply (#4934)
* Replace loop of dispatch_async with dispatch_apply

* Update ggml-metal.m

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-16 15:41:27 +02:00
Alex Azarov
7c8d3abd1a
metal : log recommendedMaxWorkingSetSize on iOS 16+ (#4936)
* metal: Log `recommendedMaxWorkingSetSize` on iOS 16+

* Only log on iOS and macOS, ignoring tvOS and other platforms

* Check for Xcode version before using recommendedMaxWorkingSetSize

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-16 15:33:02 +02:00
Justine Tunney
a0b3ac8c48
ggml : introduce GGML_CALL function annotation (#4850)
This change makes it possible to build ggml-cuda.cu and ggml-metal.m as
independent dynamic shared objects, that may be conditionally linked at
runtime in a multiplatform binary. It introduces a GGML_CALL annotation
that documents which functions have a cyclic call relationship, between
the application code and GPU modules.

This change does nothing, unless the build defines -DGGML_MULTIPLATFORM
which causes back-references and function pointers to conform to MS ABI
which is supported by NVCC, ROCm, XCode, GCC and Clang across platforms
2024-01-16 13:16:33 +02:00
Alex Azarov
5f5fe1bd60
metal : correctly set SIMD support flags on iOS (#4923)
* Correctly set support_simdgroup_reduction and support_simdgroup_mm on iPhone/iPad

* log a little bit more info on iOS
2024-01-14 10:44:39 +02:00
Georgi Gerganov
4be5ef556d
metal : remove old API (#4919)
ggml-ci
2024-01-13 20:45:45 +02:00
Georgi Gerganov
2d57de5255
metal : disable log for loaded kernels (#4794) 2024-01-13 18:46:37 +02:00