* iq3_s: somewhat faster AVX2 dot product
On Ryzen a 7950X TG-128 increases to 16 t/s from 15.5 t/s using
16 threads. For 8 threads it is 13.85 t/s vs 11.75 t/s.
PP-512 increases to 28.5 t/s from 23.8 t/s.
* iq3_s: somewhat faster ARM_NEON dot product
Still dog slow - 10.7 t/s up from 9.9 t/s.
* iq3_s: another small ARM_NEON improvement
10.7 -> 11.0 t/s. Using vmulq_s8 is faster than the xor - sub trick
that works best on AVX2.
* iq3_s: minor improvement on Metal
49.4 t/s -> 50.3 t/s
* iq3_s: PPL improvement
E.g., for a context of 4096 LLaMA-v2-7B goes to 5.1340 from 5.1653.
* iq3_s: use new grid everywhere
* Fix ARM_NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* WIP: make i-quants work for QK_K = 64
* iq2_xs: attempt to fix AVX dot product for QK_K = 64
Tests pass, but I get gibberish.
* QK_K = 64 tests pass on ARM_NEON and Metal
Sadly, that does not mean it actually works.
* Make CUDA compile with QK_K = 64
Tests don't pass, plus we get misaligned access
* Q2_K: fixed bug in imatrix quantization for QK_K = 64
* iq1_s: turn off SIMD implementation for QK_K = 64 (it does not work)
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Try IQ4_NL with blocks of 64 - does not look good
* iq4_xs: go to super-blocks of 256 and 6-bit scales for blocks of 32
* iq4_xs: CUDA works - 133.2 t/s
* iq4_xs: AVX2 dot product
* iq4_xs: ARM_NEON dot product
* iq4_nl: Metal implementation
As usual, Metal / Apple Silicon don't like my quants.
* iq3_xs: minor fix
* iq4_xs: shrink by using IQ3_S for attn_k and attn_q
* iq4_xs: revert using IQ3_S for attn_k and attn_v
PPL vs size is good, but CPU performance suffers: on M2 Max
TG-128 drops to 21.7 t/s from 28.8, and on a Ryzen-7950X
to 14.5 t/s from 15.8 t/s. On CUDA we have 135 t/s when
using IQ3_S vs 133 t/s with pure IQ4_XS.
* Fix CI
* iq4_xs: Added forgotten check for 256 divisibility
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Adding IQ2_S and IQ2_M as a single cumulative commit
* Update examples/quantize/quantize.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* iq4_nl: squash commits for easier rebase
* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels
* Resurrecting iq3_xs
After all the experimentation, nothing was better than this.
* Minor PPL improvement via a block scale fudge factor
* Minor improvement via 3 neighbours
* iq3_xs: working scalar and AVX2 dot products
* iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s)
* iq3_xs: working Metal implementation
* Adding IQ3_M - IQ3_XS mix with mostly Q4_K
* iiq3_xs: a 3.4375 bpw variant
* iq3_xs: make CUDA work for new version
* iq3_xs: make scalar and AVX2 work for new version
* iq3_s: make ARM_NEON work with new version
* iq3_xs: make new version work on metal
Performance is very similar to Q3_K_S
* iq3_xs: tiny Metal speed improvement
* iq3_xs: tiny Metal speed improvement
* Fix stupid warning
* Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS
* iq3_xs: rename to iq3_s
* iq3_s: make tests pass
* Move Q3_K_XS mix to 3.25 bpw
* Attempt to fix failing tests
* Another attempt to fix the Windows builds
* Attempt to fix ROCm
* ROCm again
* iq3_s: partial fix for QK_K = 64
* iq3_s: make it work on metal for QK_K = 64
Pleasent surprise: the coding was super-block size independent,
so all it took was to delete some QK_K == 256 guards.
* Will this fix ROCm?
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* iq4_nl: squash commits for easier rebase
* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels
* iq4_nl: Fix after merging with master
* iq4_nl: another fix after merging with master
* Use IQ4_NL instead of Q4_K when using k-quants is not possible
* Fix typo that makes several tests fail
* It was the ggml_vdotq thing missed inside the brackets
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* iq1_s: WIP basics
* iq1_s: CUDA is working
* iq1_s: scalar CPU dot product
* iq1_s: WIP AVX2 dot product - something is not right
* Fix tests
* Fix shadow warnings
* Fix after merge with latest master
* iq1_s: AVX2 finally works
* iq1_s: ARM_NEON dot product. Works, but not very fast
* iq1_s: better grid
* iq1_s: use IQ2_XXS for attn_output
At a cost of 0.04 extra bpw this gives a big improvement in PPL.
* iq1_s: Metal basics
Dequantize works, but not dot product
* iq1_s: Metal works, but quite slow
As usual, Apple Silicon does not like the code I write.
* iq1_s: Tests
* iq1_s: slightly faster dot product
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* ggml : avoid recomputing alibi slopes (CPU)
* llama : reuse hparams.f_max_alibi_bias in all cases
ggml-ci
* ggml : support alibi bias in ggml_soft_max_ext (CPU + Metal)
ggml-ci
* ggml : handle all SRCs (do not break on first null)
ggml-ci
* tests : do not use slope for large soft_max
accumulates too much error
ggml-ci
* ggml : alternative ALiBi without extra tensor
We compute the slopes in the kernel
ggml-ci
* cuda : add ALiBi support in ggml_soft_max_ext
ggml-ci
* ggml : deprecate ggml_alibi
* ggml : support multi-sequence ALiBi (Metal)
ggml-ci
* cuda : add multi-seq ALiBi + remote F16 soft_max
ggml-ci
* ggml : update deprecation message
* ggml : fix pos ptr when no ALiBi
ggml-ci
* cuda : fix performance (pow -> powf)
* cuda : precompute ALiBi constants
* metal : pre-compute ALiBi slopes
ggml-ci
* llama : init kq_pos only if needed
ggml-ci
* test-backend-ops : add null pos test to soft_max
test-backend-ops : replace soft_max tests
ggml-ci
---------
Co-authored-by: slaren <slarengh@gmail.com>
* iq3_xxs: quantize/dequantize
RMSE seems a bit high-ish at about half-way between q2_K and
q3_K, so need to check more.
* iq3_xxs: CUDA dequantize works
* iq2_xxs: tuning quantization
* iq3_xxs: starting to look better
PPL on wiki.test.raw
LLaMA-v1-7B: 6.4218
LLaMA-v2-7B: 6.3560
Mistral-7B : 6.0717
This is better than Q3_K_XS, with a 5% reduction in quantized model
size.
* iq3_xxs: CUDA dot product
We have
PP-512: 5891 t/s
TG-128: 143.9 t/s
* iq3_xxs: scalar and AVX2 dot products
* iq3_xxs: ARM_NEON and Metal
Metal performance is decent, ARM_NEON is pathetic
* iq3_xxs: slightly better grid points
* Faster iq3_xxs and iq2_xs dot products on CUDA
* iq3_xxs: add some quant mix
* iq3_xxs: fix failing quantization test
Dot product still fails. Is this real?
* iq3_xxs: hopefully fix ROCm
* iq3_xxs: failing tests
This time the dot product accuracy did find an actual bug
in the AVX2 implementation.
* Add IQ3_XXS to test-backend-ops
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* iq2_xs: basics
* iq2_xs: this should have been in the basics
* iq2_xs: CUDA and scalar CPU works
* iq2_xs: WIP Metal
* iq2_xs: Metal now works
* iq2_xs: working, but dog slow, ARM_NEON dot product
* iq2_xs: better ARM_NEON dot product
We are now at 19.5 t/s for TG-128 and 61 t/s for PP-512 when
running on the CPU.
* iq2_xs: AVX2 dot product - 19.5 t/s
* iq2_xs: faster AVX2 dit product
21.4 t/s for TG-128, 59.2 t/s for PP-512.
The latter is 2x compared to the previous version.
* iq2_xs: had forgotten to delete iq2-data.h
* Add llama enum for IQ2_XS
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>