Commit Graph

51 Commits

Author SHA1 Message Date
Vladimir
a65d37ad36 using github Pithikos/C-Thread-Pool for threading 2023-04-01 20:18:04 +02:00
Justine Tunney
6f23ba5ee2 Ensure --mlock works properly with mmap() support 2023-03-30 12:28:25 -07:00
Slaren
c03ae8dca1 Add mmap support for model files 2023-03-30 12:28:25 -07:00
Casey Primozic
a4755cf288
Remove unused variable (#607)
* It seems some new warning were added recently that exposed this.  I wrote the code that included this unused variable originally and it is indeed not needed.
2023-03-30 17:53:35 +00:00
Georgi Gerganov
77efdf5a50
ggml : fix NEON signs (close #620, #622) 2023-03-30 20:27:32 +03:00
slaren
ed3c680bcd
Fix GGML_F32Cx8_STORE in AVX without F16C path (#619) 2023-03-30 11:16:30 +02:00
Georgi Gerganov
b51c717d5c
ggml : init time on first ggml_init() call 2023-03-29 22:15:34 +03:00
Georgi Gerganov
cea1c85948
ggml : add ARM_NEON dequantize_row_q4_1() 2023-03-29 22:10:01 +03:00
Georgi Gerganov
f202ada131
ggml : add ARM_NEON quantize_row_q4_1() 2023-03-29 22:03:07 +03:00
Georgi Gerganov
3b44d30d9b
ggml : add ARM_NEON ggml_vec_dot_q4_1() 2023-03-29 22:03:07 +03:00
anzz1
83df5639eb
Fix GCC warning about binary literal (#595)
0b10101010 -> 0xAA /* 0b10101010 */
2023-03-29 13:20:07 +00:00
anzz1
5a5f8b1501
Enable Fused-Multiply-Add (FMA) and F16C/CVT16 vector extensions on MSVC (#375)
* Enable Fused-Multiply-Add (FMA) instructions on MSVC

__FMA__ macro does not exist in MSVC

* Enable F16C/CVT16 vector extensions on MSVC

__F16C__ macro does not exist in MSVC, but is implied with AVX2/AVX512

* MSVC cvt intrinsics

* Add __SSE3__ macro for MSVC too because why not

even though it's not currently used for anything when AVX is defined
2023-03-28 22:44:29 +03:00
slaren
2a98bc18ea
ggml : add AVX2 implementation of quantize_row_q4_1 (#515)
* Add AVX2 implementation of quantize_row_q4_1

* Actually use AVX2

* Make quantize_row_q4_1 static

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-28 21:06:03 +03:00
Stephan Walter
99c5b27654
ggml : refactor quantized processing functions (#509)
* Refactor quantized processing functions

* ggml : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-28 20:13:01 +03:00
Stephan Walter
436e561931
all : be more strict about converting float to double (#458)
* Be more strict about converting float to double

* Test equivalence of round, SILU implementations

Test module is commented out in CMakeLists.txt because the tests may
take a long time, depending on how much the compiler optimizes.

* Fix softmax in perplexity.cpp

* all : prefer float over double where appropriate

* perplexity : add <cmath>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-28 19:48:20 +03:00
Stephan Walter
c1f885067c
ggml : introduce structs for the q4 data blocks (#356)
* Introduce structs for the q4 data blocks

* ggml : rename quant struct variables + fix ARM_NEON

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-28 18:56:03 +03:00
slaren
a6bdc47cba
Fix usage of F16C intrinsics in AVX code (#563)
* Fix usage of F16C intrinsics in AVX code when F16C is not defined
2023-03-28 17:26:55 +03:00
Stephan Walter
939ad2d3a5
Fix undefined variables in debug build, remove unused variables (#531) 2023-03-26 15:34:02 +00:00
slaren
459e93cce0
Add AVX2 implementation of dequantize_row_q4_1 (#505) 2023-03-25 20:31:48 +02:00
Georgi Gerganov
a316a425d0
Overhaul the examples structure
- main -> examples
- utils -> examples (renamed to "common")
- quantize -> examples
- separate tools for "perplexity" and "embedding"

Hope I didn't break something !
2023-03-25 20:26:40 +02:00
Georgi Gerganov
ecbe466a36
Retire the ggml_mul_mat() branch for transposed src0 (#500)
* Retire the ggml_mul_mat() for transposed src0

- It can always be made contiguous with ggml_cpy()
- The code is now simplified
- The results are deterministic in respect to num threads

* SIMD-ify dequantize_row_q4_0() for ARM_NEON (#502)

* Attempt to SIMD-ify dequantize_row_q4_0() for ARM_NEON

* Fix dequantization - forgot to interleave the quants
2023-03-25 19:47:21 +02:00
slaren
09aecbf628
Add AVX2 implementation of dequantize_row_q4_0 (#467) 2023-03-25 17:06:49 +02:00
Georgi Gerganov
6b6dbc8910
Remove obsolete assert and fix compiler warning 2023-03-25 16:22:05 +02:00
Georgi Gerganov
2a2e63ce05
Fix nasty bug in ggml_compute_forward_mul_mat_f32() and reenable BLAS 2023-03-25 16:10:14 +02:00
Georgi Gerganov
8520fc310e
Disable BLAS altogether - the bug is not just for qunatized mat mul 2023-03-24 23:47:06 +02:00
Georgi Gerganov
b3f460e941
Disable BLAS branch in mul_mat - seems there is a bug 2023-03-24 23:39:17 +02:00
Georgi Gerganov
7a9b6c3a8b
Reduce memory usage and allocate enough memory for largest context (#473)
* Reduce memory usage and allocate enough memory for large contexts

* Simpler scratch buffer usage

* Reenable BLAS for quantized mul_mat

* Fix number of layers in 30B and 65B

* Fix KV cache size for F32
2023-03-24 23:17:37 +02:00
Cameron Kaiser
481044d50c
additional optimizations for POWER9 (#454) 2023-03-24 17:19:26 +02:00
comex
563cdc391d
Support calling mlock() on loaded model data on Linux and macOS (#453)
* Support calling mlock() on loaded model data on Linux and macOS

This is enabled by a new --mlock command line option.

Using mlock() disables swapping and memory compression for the model
data.  Doing so can be useful on systems where the model takes up a
large fraction of system RAM.  In my experience, macOS is quite eager to
start compressing llama.cpp's memory, which then makes it halt for a few
seconds while it decompresses, even with a model that uses "only" 25GB
out of 32GB.

Of course, this comes at the cost of forcing the system to swap or
compress other processes' memory instead, so it needs to be used with
care and shouldn't be enabled by default.

In theory it should be possible to support this on Windows as well using
VirtualLock(), but I'm not much of a Windows user.

* Update llama.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-24 17:19:05 +02:00
Stephan Walter
69c92298a9
Deduplicate q4 quantization functions (#383)
* Deduplicate q4 quantization functions

* Use const; add basic test

* Re-enable quantization test

* Disable AVX2 flags in CI

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-22 19:29:06 +02:00
Valentyn Bezshapkin
97940520e8
fix: add POSIX functionality for Linux compilation (#51)
* fix: add POSIX functionality for Linux compilation

* fix: older standard for compatibility
2023-03-22 19:20:25 +02:00
Georgi Gerganov
f5a77a629b
Introduce C-style API (#370)
* Major refactoring - introduce C-style API

* Clean up

* Add <cassert>

* Add <iterator>

* Add <algorithm> ....

* Fix timing reporting and accumulation

* Measure eval time only for single-token calls

* Change llama_tokenize return meaning
2023-03-22 07:32:36 +02:00
Kevin Lo
715d292ee0
Add OpenBSD support (#314) 2023-03-21 17:50:09 +02:00
Casey Primozic
2e664f1ff4
Add initial AVX512 support for dot product on Linux (#320)
* Update Makefile to detect AVX512 support and add compiler flags if it's available
 * Based on existing AVX2 implementation, dot product on one 32-value block of 4-bit quantized ints at a time
 * Perform 8 bit -> 16 bit sign extension and multiply+add on 32 values at time instead of 16
 * Use built-in AVX512 horizontal reduce add to get sum at the end
 * Manual unrolling on inner dot product loop to reduce loop counter overhead
2023-03-21 15:35:42 +01:00
Georgi Gerganov
22213a17b5
Change RMSNorm eps to 1e-6 (#173)
I think this is what is used in the Python code
2023-03-19 17:30:00 +02:00
Stephan Walter
367946c668
Don't tell users to use a bad number of threads (#243)
The readme tells people to use the command line option "-t 8", causing 8
threads to be started. On systems with fewer than 8 cores, this causes a
significant slowdown. Remove the option from the example command lines
and use /proc/cpuinfo on Linux to determine a sensible default.
2023-03-17 19:47:35 +02:00
Matvey Soloviev
904d2a8d6a
Q4_1 quantization (#193)
* Add AVX2 version of ggml_vec_dot_q4_1

* Small optimisations to q4_1 dot product (@Const-me)

* Rearrange Q4_1 quantization to work for multipart models. (Fix #152)

* Fix ggml_vec_mad_q4_1 too

* Fix non-vectorised q4_1 vec mul
2023-03-17 06:48:39 +02:00
Nebula
9b4a15b17d
Fix RMS norm in GGML (#191) 2023-03-15 19:29:25 -04:00
hoangmit
6eac39ba95
Add RMS norm and use it (#187)
* add ggml_rms_norm

* update op num
2023-03-16 00:41:38 +02:00
hoangmit
113e685d18
inline -> static inline for "bytesFromNibbles" (#161)
Without "static" prefix, it fails to compile in clang
2023-03-15 21:05:14 +02:00
Ronsor
47857e564c
Don't use vdotq_s32 if it's not available (#139)
* Don't use vdotq_s32 if it's not available

`dotprod` extensions aren't available on some ARM CPUs (e.g. Raspberry Pi 4), so check for them and only use them if they're available.

Reintroduces the code removed in 84d9015 if `__ARM_FEATURE_DOTPROD` isn't defined.

* Update ggml.c

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-14 21:34:37 +02:00
Thomas Klausner
41be0a3b3d
Add NetBSD support. (#90) 2023-03-13 18:40:54 +02:00
Georgi Gerganov
84d9015c4a
Use vdotq_s32 to improve performance (#67)
* 10% performance boost on ARM

* Back to original change
2023-03-13 18:36:44 +02:00
Georgi Gerganov
c80e2a8f2a
Revert "10% performance boost on ARM"
This reverts commit 113a9e83eb.

There are some reports for illegal instruction.
Moved this stuff to vdotq_s32 branch until resolve
2023-03-13 01:28:08 +02:00
Georgi Gerganov
54a0e66ea0
Check for vdotq_s32 availability 2023-03-13 01:21:03 +02:00
Georgi Gerganov
543c57e991
Ammend to previous commit - forgot to update non-QRDMX branch 2023-03-13 01:05:24 +02:00
Georgi Gerganov
113a9e83eb
10% performance boost on ARM 2023-03-13 00:56:10 +02:00
Sebastián A
eb062bb012
Windows fixes (#31)
* Apply fixes suggested to build on windows

Issue: https://github.com/ggerganov/llama.cpp/issues/22

* Remove unsupported VLAs

* MSVC: Remove features that are only available on MSVC C++20.

* Fix zero initialization of the other fields.

* Change the use of vector for stack allocations.
2023-03-12 22:15:00 +02:00
Georgi Gerganov
f1eaff4721 Add AVX2 support for x86 architectures thanks to @Const-me ! 2023-03-11 18:04:25 +02:00
Georgi Gerganov
007a8f6f45
Support all LLaMA models + change Q4_0 quantization storage 2023-03-11 11:28:30 +02:00