* Added integration tests for GBNF parser to validate correctness of parsing, as well as correctness of string matching. Intended for use to pin behavior while working on performance improvements.
* Fixing whitespace errors and cleaning error message alert to be clearer.
* Removing hacky include to llama.cpp from grammar integration test now that needed functions are available via internal API.
* Comment cleanup.
* Reorganizing tests for readability.
* Cleaning up debug message to make a bit more sense.
* Add openchat chat template
* Add chat template test for openchat
* Add chat template for vicuna
* Add chat template for orca-vicuna
* Add EOS for vicuna templates
* Combine vicuna chat templates
* Add tests for openchat and vicuna chat templates
* Add chat template for alpaca
* Add separate template name for vicuna-orca
* Remove alpaca, match deepseek with jinja output
* Regenerate chat template test with add_generation_prompt
* Separate deepseek bos from system message
* Match openchat template with jinja output
* Remove BOS token from templates, unprefix openchat
* ggml : update mul_mat_id to use the same tensor for all the experts
* update cuda
* minor
* update metal
* update test-backend-ops
* fix cuda
* Update ggml-metal.m
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* update convert.py
* update convert-hf-to-gguf.py
* update convert.py for mixtral hf models
* Update convert-hf-to-gguf.py
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* cuda : support non-pow-2 number of experts
* allow quantize to work for split and merged experts models in the same way
* cleanup + disable mmap automatically with split tensors models
* update imatrix
* test-backend-ops : test qwen argsort
* update grok model loading
* llama : add merged experts tensors to the grok tensor map
* minor
* gguf : bump version
* fix quantizing of merged experts
* convert-hf-to-gguf.py : update grok (untested)
* make linter happy
* cuda/argsort : use shared memory instead of pool memory
* convert : fix grok tensor names
* metal : add support for non-pow-2 argsort
* llama : more loader cleanup, better error checking
* cuda : fix warning
* llama : still use mmap for loading old models, but copy the data to a host buffer
* add review note
* llama : remove ffn tensor counting + add sanity check
ggml-ci
* convert : fix handling of n_experts == None
ggml-ci
* imatrix : fix ncall counters
* llama : produce error if imatrix size does not match
* quantize : terminate on errors + trace logs
ggml-ci
* metal : pad shared memory to 16 bytes
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* iq1_m: basics
* iq1_m: basics-2
* iq1_m: CUDA dequantize works
Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B.
* iq1_m: separate shifts for each group of 8 in a block
We get
PPL(LLaMA-v2-7B ) = 9.2810
PPL(LLaMA-v2-13B) = 6.8105
Not bad, but slightly higher than
sqrt(PPL(IQ1_S) * PPL(IQ2_XXS))
which is the expected outcome given that IQ1_M is
halfway between IQ1_S and IQ2_XXS in terms of bpw.
From this, we would expect
PPL = 9.14 for LLaMA-v2-7B
PPL = 6.63 for LLaMA-v2-13B
* iq1_m: go to 3-bit scales
There is slight increase in PPL, but the 0.0625 bpw reduction
in size is totally worth it.
We now have
PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw
PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw
PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw
* iq1_m: scalar dot product
* iq1_m: AVX2 dot product
* iq1_m: very slightly faster AVX2 dot product
* iq1_m: ARM_NEON dot product
Works, but very slow (10.5 t/s)
* iq1_m: Metal - dequantize works, dot product does not
* iq1_m: Metal now works
About the same performance as iq1_s.
* iq1_m: minor
* iq1_m: checking pure iq1_m quantization
It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight
with Q4_K.
* iiq1_m: slightly faster ARM_NEON dot product
10.5 t/s -> 11.65 t/s
* iq1_m: faster ARM_NEON dot product
11.65 t/s -> 14.9 t/s
* iq1_m: another minor ARM_NEON dot product improvement
14.9 -> 15.0 t/s
* iq1_m: small PPL improvement via super-block scale adjustment
After quantizing block scales redo the super-block scale fit.
PPL(LLaMA-v2-7B ) = 9.3346
PPL(LLaMA-v2-13B) = 6.8419
PPL(LLaMA-v2-70B) = 4.8294
PPL(Mistral-7B ) = 8.1624
* iq1_m: adapt to CUDA refactoring
* iq1_m: remove unused variable
We have progressed to warnings being errors.
* iq1_m: add to backend-ops tests
* iq1_m: fix Windows ARM
* iq1_m: use common definition of iq1m_scale_t
* cuda: assert -> NO_DEVICE_CODE
* iq1_M: PR comments
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Try IQ4_NL with blocks of 64 - does not look good
* iq4_xs: go to super-blocks of 256 and 6-bit scales for blocks of 32
* iq4_xs: CUDA works - 133.2 t/s
* iq4_xs: AVX2 dot product
* iq4_xs: ARM_NEON dot product
* iq4_nl: Metal implementation
As usual, Metal / Apple Silicon don't like my quants.
* iq3_xs: minor fix
* iq4_xs: shrink by using IQ3_S for attn_k and attn_q
* iq4_xs: revert using IQ3_S for attn_k and attn_v
PPL vs size is good, but CPU performance suffers: on M2 Max
TG-128 drops to 21.7 t/s from 28.8, and on a Ryzen-7950X
to 14.5 t/s from 15.8 t/s. On CUDA we have 135 t/s when
using IQ3_S vs 133 t/s with pure IQ4_XS.
* Fix CI
* iq4_xs: Added forgotten check for 256 divisibility
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Adding IQ2_S and IQ2_M as a single cumulative commit
* Update examples/quantize/quantize.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* iq4_nl: squash commits for easier rebase
* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels
* Resurrecting iq3_xs
After all the experimentation, nothing was better than this.
* Minor PPL improvement via a block scale fudge factor
* Minor improvement via 3 neighbours
* iq3_xs: working scalar and AVX2 dot products
* iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s)
* iq3_xs: working Metal implementation
* Adding IQ3_M - IQ3_XS mix with mostly Q4_K
* iiq3_xs: a 3.4375 bpw variant
* iq3_xs: make CUDA work for new version
* iq3_xs: make scalar and AVX2 work for new version
* iq3_s: make ARM_NEON work with new version
* iq3_xs: make new version work on metal
Performance is very similar to Q3_K_S
* iq3_xs: tiny Metal speed improvement
* iq3_xs: tiny Metal speed improvement
* Fix stupid warning
* Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS
* iq3_xs: rename to iq3_s
* iq3_s: make tests pass
* Move Q3_K_XS mix to 3.25 bpw
* Attempt to fix failing tests
* Another attempt to fix the Windows builds
* Attempt to fix ROCm
* ROCm again
* iq3_s: partial fix for QK_K = 64
* iq3_s: make it work on metal for QK_K = 64
Pleasent surprise: the coding was super-block size independent,
so all it took was to delete some QK_K == 256 guards.
* Will this fix ROCm?
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* server: fallback to chatml
* add new chat template
* server: add AlphaMonarch to test chat template
* server: only check model template if there is no custom tmpl
* remove TODO
* iq4_nl: squash commits for easier rebase
* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels
* iq4_nl: Fix after merging with master
* iq4_nl: another fix after merging with master
* Use IQ4_NL instead of Q4_K when using k-quants is not possible
* Fix typo that makes several tests fail
* It was the ggml_vdotq thing missed inside the brackets
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* llama: add llama_chat_apply_template
* test-chat-template: remove dedundant vector
* chat_template: do not use std::string for buffer
* add clarification for llama_chat_apply_template
* llama_chat_apply_template: add zephyr template
* llama_chat_apply_template: correct docs
* llama_chat_apply_template: use term "chat" everywhere
* llama_chat_apply_template: change variable name to "tmpl"
* iq1_s: WIP basics
* iq1_s: CUDA is working
* iq1_s: scalar CPU dot product
* iq1_s: WIP AVX2 dot product - something is not right
* Fix tests
* Fix shadow warnings
* Fix after merge with latest master
* iq1_s: AVX2 finally works
* iq1_s: ARM_NEON dot product. Works, but not very fast
* iq1_s: better grid
* iq1_s: use IQ2_XXS for attn_output
At a cost of 0.04 extra bpw this gives a big improvement in PPL.
* iq1_s: Metal basics
Dequantize works, but not dot product
* iq1_s: Metal works, but quite slow
As usual, Apple Silicon does not like the code I write.
* iq1_s: Tests
* iq1_s: slightly faster dot product
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* ggml : avoid recomputing alibi slopes (CPU)
* llama : reuse hparams.f_max_alibi_bias in all cases
ggml-ci
* ggml : support alibi bias in ggml_soft_max_ext (CPU + Metal)
ggml-ci
* ggml : handle all SRCs (do not break on first null)
ggml-ci
* tests : do not use slope for large soft_max
accumulates too much error
ggml-ci
* ggml : alternative ALiBi without extra tensor
We compute the slopes in the kernel
ggml-ci
* cuda : add ALiBi support in ggml_soft_max_ext
ggml-ci
* ggml : deprecate ggml_alibi
* ggml : support multi-sequence ALiBi (Metal)
ggml-ci
* cuda : add multi-seq ALiBi + remote F16 soft_max
ggml-ci
* ggml : update deprecation message
* ggml : fix pos ptr when no ALiBi
ggml-ci
* cuda : fix performance (pow -> powf)
* cuda : precompute ALiBi constants
* metal : pre-compute ALiBi slopes
ggml-ci
* llama : init kq_pos only if needed
ggml-ci
* test-backend-ops : add null pos test to soft_max
test-backend-ops : replace soft_max tests
ggml-ci
---------
Co-authored-by: slaren <slarengh@gmail.com>
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h
* Reverted Makefile
* Fixed include
* Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables
* removed trailing whitespace
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h
* Reverting Makefile
* Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet
* Removing MIRROR_MODE code for this PR
* Removing last bit of MIRROR_MODE code for this PR
* Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static
* Fixed lingering init_llama_backend() bool calls in tests and examples
* Remote enum llama_numa_strategies
* Revert bad merge with dynatemp flags
* add missing enum ggml_numa_strategies declaration and revert sync problem with master
* add missing enum ggml_numa_strategies declaration
* fixed ggml_init_numa variable
* Update ggml.h
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges
* split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples
* Fix up some boolean vs enum comparisons
* Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype
* Update ggml.h
Align enum values
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml.c
Remove whitespace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml.c
align paremeters
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/server/server.cpp
remove whitespace and align brace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update common/common.cpp
Remove whitespace and align brace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* unified ggml_numa_strategy enum and fixed text alignment in server.cpp example
* Update ggml.c
simplified return for platforms without NUMA support
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* removed redundant else from cli argument processing of --numa
* whitespace
---------
Co-authored-by: root <root@nenya.lothlorien.ca>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
* ggml: aarch64: implement smmla kernel for q8_0_q8_0 quantized gemm
armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q8_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"
On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.
* ggml: aarch64: implement smmla kernel for q4_0_q8_0 quantized gemm
armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"
On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.
* ggml: aarch64: implement smmla kernel for q4_1_q8_1 quantized gemm
armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_1_q8_1 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"
On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.
* ggml: update unit tests for the new vec_dot interface
* llama.cpp: add MATMUL_INT8 capability to system_info
* New Feature:
1. Sum_Rows:
fix cuda kernel overflow
fix block shape error when nrows too big
2. Im2Col:
Support Batch in cuda
Support f32 to f32 both in cpu && cuda
3. DepthWiseConv:
Support by Im2Col && MulMat
4. Pool_2d:
Supoort avg pooling in cuda
5. HardSigmoid:
Imp in cuda
6. HardSwish:
Imp in cuda
* fix tabs instead of spaces
* code clean
* CUDA POOL2D
* ADD POOL2D test case in test-backend-ops.cpp
* code clean
* fix pool2d_kernel
nits
* fix bug in pool2d kernel
* fix avg pooling, count_include_pad
nits
* test-backend-ops : add more pool_2d tests
* cuda : fix warnings and formatting
* ggml : check types in release builds too in pool_2d
* test-backend-ops : remove f16 pool_2d tests
* cuda : more style fixes
* Add assert in ggml_cuda_op_pool2d
* pool2d float padding fallback
* test-backend-ops : add dst_type to im2col
---------
Co-authored-by: slaren <slarengh@gmail.com>
* added cuda float16->float32 upcasting to ggml_cuda_cpy
* added ability to copy 4d tensors with the cuda backend
* added tests for float16_>float32 upcast and 4d tensor cuda copys
* added 4d copy test for float32->float16 copy
* applied patch suggested by @iamlemec
* simplify cpy tests
---------
Co-authored-by: slaren <slarengh@gmail.com>
* iq3_xxs: quantize/dequantize
RMSE seems a bit high-ish at about half-way between q2_K and
q3_K, so need to check more.
* iq3_xxs: CUDA dequantize works
* iq2_xxs: tuning quantization
* iq3_xxs: starting to look better
PPL on wiki.test.raw
LLaMA-v1-7B: 6.4218
LLaMA-v2-7B: 6.3560
Mistral-7B : 6.0717
This is better than Q3_K_XS, with a 5% reduction in quantized model
size.
* iq3_xxs: CUDA dot product
We have
PP-512: 5891 t/s
TG-128: 143.9 t/s
* iq3_xxs: scalar and AVX2 dot products
* iq3_xxs: ARM_NEON and Metal
Metal performance is decent, ARM_NEON is pathetic
* iq3_xxs: slightly better grid points
* Faster iq3_xxs and iq2_xs dot products on CUDA
* iq3_xxs: add some quant mix
* iq3_xxs: fix failing quantization test
Dot product still fails. Is this real?
* iq3_xxs: hopefully fix ROCm
* iq3_xxs: failing tests
This time the dot product accuracy did find an actual bug
in the AVX2 implementation.
* Add IQ3_XXS to test-backend-ops
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* first update for migration
* update init_cublas
* add debug functio, commit all help code
* step 1
* step 2
* step3 add fp16, slower 31->28
* add GGML_LIST_DEVICE function
* step 5 format device and print
* step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue
* support main device is non-zero
* step7 add debug for code path, rm log
* step 8, rename all macro & func from cuda by sycl
* fix error of select non-zero device, format device list
* ren ggml-sycl.hpp -> ggml-sycl.h
* clear CMAKE to rm unused lib and options
* correct queue: rm dtct:get_queue
* add print tensor function to debug
* fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481
* summary dpct definition in one header file to replace folder:dpct
* refactor device log
* mv dpct definition from folder dpct to ggml-sycl.h
* update readme, refactor build script
* fix build with sycl
* set nthread=1 when sycl, increase performance
* add run script, comment debug code
* add ls-sycl-device tool
* add ls-sycl-device, rm unused files
* rm rear space
* dos2unix
* Update README_sycl.md
* fix return type
* remove sycl version from include path
* restore rm code to fix hang issue
* add syc and link for sycl readme
* rm original sycl code before refactor
* fix code err
* add know issue for pvc hang issue
* enable SYCL_F16 support
* align pr4766
* check for sycl blas, better performance
* cleanup 1
* remove extra endif
* add build&run script, clean CMakefile, update guide by review comments
* rename macro to intel hardware
* editor config format
* format fixes
* format fixes
* editor format fix
* Remove unused headers
* skip build sycl tool for other code path
* replace tab by space
* fix blas matmul function
* fix mac build
* restore hip dependency
* fix conflict
* ren as review comments
* mv internal function to .cpp file
* export funciton print_sycl_devices(), mv class dpct definition to source file
* update CI/action for sycl code, fix CI error of repeat/dup
* fix action ID format issue
* rm unused strategy
* enable llama_f16 in ci
* fix conflict
* fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml
* fix ci cases for unsupported data type
* revert unrelated changed in cuda cmake
remove useless nommq
fix typo of GGML_USE_CLBLAS_SYCL
* revert hip cmake changes
* fix indent
* add prefix in func name
* revert no mmq
* rm cpu blas duplicate
* fix no_new_line
* fix src1->type==F16 bug.
* pass batch offset for F16 src1
* fix batch error
* fix wrong code
* revert sycl checking in test-sampling
* pass void as arguments of ggml_backend_sycl_print_sycl_devices
* remove extra blank line in test-sampling
* revert setting n_threads in sycl
* implement std::isinf for icpx with fast math.
* Update ci/run.sh
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/sycl/run-llama2.sh
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/sycl/run-llama2.sh
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add copyright and MIT license declare
* update the cmd example
---------
Co-authored-by: jianyuzh <jianyu.zhang@intel.com>
Co-authored-by: luoyu-intel <yu.luo@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* scripts : add lib.sh and lib_test.sh
* scripts : stub out new ci-run.sh script
* scripts : switch to PascalCase for functions
This looks a little odd at first, but I find it very useful as a
convention to know if a command is part of our code vs a builtin.
* scripts : add some fancy conversion from snake_case to PascalCase
* Add venv to ci/run.sh
* Revert scripts work
* scripts : add wrapper script for local use of ci/run.sh
* Simplify .gitignore for tests, clang-tidy fixes
* Label all ctest tests
* ci : ctest uses -L main
* Attempt at writing ctest_with_model
* Update test-model-load-cancel
* ci : add ctest_with_model for debug and release
ggml-ci
* Fix gg_get_model function
ggml-ci
* got stuck on CMake
* Add get_model.cpp to tests/CMakeLists.txt
ggml-ci
* Fix README.md output for ctest_with_model
ggml-ci
* workflows : use `-L main` for all ctest
ggml-ci
* Fixes
* GG_RUN_CTEST_MODELFILE => LLAMACPP_TESTMODELFILE
* Always show warning rather than failing if model file variable is not
set
* scripts : update usage text for ci-run.sh
* ggml : add IQ2 to test-backend-ops + refactoring
ggml-ci
* cuda : update supports_op for IQ2
ggml-ci
* ci : enable LLAMA_CUBLAS=1 for CUDA nodes
ggml-ci
* cuda : fix out-of-bounds-access in `mul_mat_vec_q`
ggml-ci
* tests : avoid creating RNGs for each Q tensor
ggml-ci
* tests : avoid creating RNGs for each tensor
ggml-ci
* llama : ggml-backend integration
* ggml-backend : add names to buffers
* fix unmap after loading
* batched-bench : add tensor_split param
* llama : check for null tensor_split
* ggml-backend : increase GGML_MAX_BACKENDS
* improve graph splitting, partial fix for --no-kv-offload
* cuda : add ggml-backend split buffer support
* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)
* ggml : fix null backend dereference (#4807)
* ggml : fix null backend dereference
* ggml : also check ggml_backend_is_cpu
* test-backend-ops : check buffer allocation failures
* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)
* ggml : fix mul_mat_id work size
* llama : rewrite session kv load/set without graphs
* minor
* llama : only initialize used backends, free backends on context free
* llama : abort ctx if cuda backend init fails
* llama : rewrite lora with ggml-backend and compute on CPU
ggml-ci
* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer
* opencl : add ggml-backend buffer type
* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)
* llama : on Metal, by default offload the full model
ggml-ci
* metal : page align the data ptr (#4854)
* Apply suggestions from code review
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* cuda : fix split buffer free
* address review comments
* llama-bench : add split-mode parameter
* fix whitespace
* opencl : fix double initialization
* server : add --split-mode parameter
* use async copy and compute to improve multi-gpu performance
ggml-ci
* use async memcpys to copy the graph outputs to the CPU
* fix opencl
* use a host buffer for the cpu compute buffer for faster copies to the gpu
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* iq2_xs: basics
* iq2_xs: this should have been in the basics
* iq2_xs: CUDA and scalar CPU works
* iq2_xs: WIP Metal
* iq2_xs: Metal now works
* iq2_xs: working, but dog slow, ARM_NEON dot product
* iq2_xs: better ARM_NEON dot product
We are now at 19.5 t/s for TG-128 and 61 t/s for PP-512 when
running on the CPU.
* iq2_xs: AVX2 dot product - 19.5 t/s
* iq2_xs: faster AVX2 dit product
21.4 t/s for TG-128, 59.2 t/s for PP-512.
The latter is 2x compared to the previous version.
* iq2_xs: had forgotten to delete iq2-data.h
* Add llama enum for IQ2_XS
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* iq2_xxs: basics
* iq2_xxs: scalar and AVX2 dot products
Needed to change Q8_K to have quants in the -127...127 range,
else the IQ2_XXS AVX implementation becomes very awkward.
The alternative would have been to use Q8_0 instead. Perhaps
I'll change later, for now this is what we have.
* iq2_xxs: ARM_NEON dot product
Somehow strangely slow (112 ms/token).
* iq2_xxs: WIP Metal
Dequantize works, something is still wrong with the
dot product.
* iq2_xxs: Metal dot product now works
We have
PP-512 = 475 t/s
TG-128 = 47.3 t/s
Not the greatest performance, but not complete garbage either.
* iq2_xxs: slighty faster dot product
TG-128 is now 48.4 t/s
* iq2_xxs: slighty faster dot product
TG-128 is now 50.9 t/s
* iq2_xxs: even faster Metal dot product
TG-128 is now 54.1 t/s.
Strangely enough, putting the signs lookup table
into shared memory has a bigger impact than the
grid values being in shared memory.
* iq2_xxs: dequantize CUDA kernel - fix conflict with master
* iq2_xxs: quantized CUDA dot product (MMVQ)
We get TG-128 = 153.1 t/s
* iq2_xxs: slightly faster CUDA dot product
TG-128 is now at 155.1 t/s.
* iq2_xxs: add to llama ftype enum
* iq2_xxs: fix MoE on Metal
* Fix missing MMQ ops when on hipBLAS
I had put the ggml_supports_mmq call at the wrong place.
* Fix bug in qequantize_row_iq2_xxs
The 0.25f factor was missing.
Great detective work by @ggerganov!
* Fixing tests
* PR suggestion
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* ggml : disable fast-math for Metal (cmake build only)
ggml-ci
* metal : fix Metal API debug warnings
* cmake : add -fno-inline for Metal build (#4545)
* metal : fix API debug warnings
* metal : fix compile warnings
* metal : use uint64_t for strides
* cmake : rename option to LLAMA_METAL_SHADER_DEBUG
* metal : fix mat-vec Q8_0 kernel for BS > 1
* metal : normalize mat-vec kernel signatures
* cmake : respect LLAMA_QKK_64 option
* metal : fix mat-vec Q4_K kernel for QK_K == 64
ggml-ci
* fixed mul-mat error for old GPUs
* style fixes
* add mul mat src1 f16 test cases, fix more cases
ggml-ci
---------
Co-authored-by: bssrdf <bssrdf@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
* cuda : improve cuda pool efficiency using virtual memory
* fix mixtral
* fix cmake build
* check for vmm support, disable for hip
ggml-ci
* fix hip build
* clarify granularity
* move all caps to g_device_caps
* refactor error checking
* add cuda_pool_alloc, refactor most pool allocations
ggml-ci
* fix hip build
* CUBLAS_TF32_TENSOR_OP_MATH is not a macro
* more hip crap
* llama : fix msvc warnings
* ggml : fix msvc warnings
* minor
* minor
* cuda : fallback to CPU on host buffer alloc fail
* Update ggml-cuda.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Update ggml-cuda.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* ensure allocations are always aligned
* act_size -> actual_size
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* sync : ggml (SD ops, tests, kernels)
ggml-ci
* cuda : restore im2col
ggml-ci
* metal : fix accuracy of dequantization kernels
ggml-ci
* cuda : restore correct im2col
ggml-ci
* metal : try to fix moe test by reducing expert size
ggml-ci
* cuda : fix bin bcast when src1 and dst have different types
ggml-ci
---------
Co-authored-by: slaren <slarengh@gmail.com>
* convert : support Mixtral as LLAMA arch
* convert : fix n_ff typo
* llama : model loading
* ggml : sync latest ggml_mul_mat_id
* llama : update graph to support MoE
* llama : fix cur -> cur_expert
* llama : first working version
* llama : fix expert weighting in the FFN
* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)
* ggml : add n_as argument to ggml_mul_mat_id
* ggml : fix ggml_get_rows to take into account ne02 / ne11
* metal : add more general support for ggml_get_rows + tests
* llama : add basic support for offloading moe with CUDA
* metal : add/mul/div use general kernel when src1 not cont
* metal : reduce the kernel launches for ggml_mul_mat_id
* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D
* ggml : update get_rows f16 and q
* cuda : support non-contiguous src1 in get_rows
* llama : offload missing ffn_moe_silu
* metal : fix ggml_get_rows to work with non-cont src1
* metal : add indirect mat-vec kernels for all quantization types
* llama : do not quantize expert gating tensors
* llama : add n_expert and n_expert_used to hparams + change quants
* test-backend-ops : add moe test
* cuda : fix get_rows when ncols is odd
* convert : determine n_ctx correctly
* metal : fix ggml_mul_mat_id for F32
* test-backend-ops : make experts more evenly probable (test_moe)
* test-backend-ops : cleanup, add moe test for batches
* test-backend-ops : add cpy from f32 -> all types test
* test-backend-ops : fix dequantize block offset
* llama : fix hard-coded number of experts
* test-backend-ops : simplify and disable slow tests to avoid CI timeout
* test-backend-ops : disable MOE test with thread sanitizer
* cuda : fix mul_mat_id with multi gpu
* convert : use 1e6 rope_freq_base for mixtral
* convert : fix style
* convert : support safetensors format
* gguf-py : bump version
* metal : add cpy f16 -> f32 kernel
* metal : fix binary ops for ne10 % 4 != 0
* test-backend-ops : add one more sum_rows test
* ggml : do not use BLAS with ggml_mul_mat_id
* convert-hf : support for mixtral-instruct (#4428)
* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct
* convert : use sentencepiece tokenizer for Mixtral-instruct
* convert : make flake8 happy
* metal : fix soft_max kernels
ref: 1914017863
* metal : limit kernels to not use more than the allowed threads
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
Disabled rules:
* E203 Whitespace before ':' - disabled because we often use 'C' Style where values are aligned
* E211 Whitespace before '(' (E211) - disabled because we often use 'C' Style where values are aligned
* E221 Multiple spaces before operator - disabled because we often use 'C' Style where values are aligned
* E225 Missing whitespace around operator - disabled because it's broken so often it seems like a standard
* E231 Missing whitespace after ',', ';', or ':' - disabled because we often use 'C' Style where values are aligned
* E241 Multiple spaces after ',' - disabled because we often use 'C' Style where values are aligned
* E251 Unexpected spaces around keyword / parameter equals - disabled because it's broken so often it seems like a standard
* E261 At least two spaces before inline comment - disabled because it's broken so often it seems like a standard
* E266 Too many leading '#' for block comment - sometimes used as "section" separator
* E501 Line too long - disabled because it's broken so often it seems like a standard
* E701 Multiple statements on one line (colon) - broken only in convert.py when defining abstract methods (we can use# noqa instead)
* E704 Multiple statements on one line - broken only in convert.py when defining abstract methods (we can use# noqa instead)
* check whether platform is 390x if yes->do not import immintrin.h
* support s390x big endian
* support --bigendian option for s390x
1. verified with baichuan7b-chat with float 16 on s390x
2. verified with baichuan7b-chat
3. verified with chinese-alpaca-2-13b-f16
* update format based on editor-config checker result
* Update convert-baichuan-hf-to-gguf.py
* 1. check in ggml.c if endianess is not match
2. update GGUF version
3. change get_pack_prefix to property
4. update information log
* always use "GGUF" as beginng of GGUF file
* Compare "GGUF" with file header char by char
1. Set GGUF_MAGIC to "GGUF" string instead of int value
2. Compare "GGUF" char by char to ensure its byte order
3. Move bytes swap code from convert.py to gguf.py write_tensor_data
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* sync : ggml (conv 1d + 2d updates)
ggml-ci
* ggml : fix UB in q5_0 and q5_1 quantize code
ggml.c:1033:39: runtime error: left shift of 1 by 31 places cannot be represented in type 'int'
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior
ggml.c:1081:39: runtime error: left shift of 1 by 31 places cannot be represented in type 'int'
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior
ggml-ci
* tests : fix UB in test-quantize-perf
* Work on the BPE tokenizer
Tokenizer tests work for Falcon-7B
* Try to fix build problem
* Fix debug assertion failure
* Fix MSVC Unicode BOM problem
* Cleanup and an improvement
* Fix compiler warning
* Cleanup
* Test doesn't work over the full range of Unicodes
* Update .gitignore and Makefile
* Another Makefile rule
* Testing Aquila
* Moving byte decoding back to `token_to_piece` ...
... because everyone is using it.
* Guarding some unusable code pathes
* Streamlining code and adding some more assertions
Important change: I'm classifying added tokens as control tokens now for BPE.
* Adding a comment
* Adding another assertion
* Fixed vocabulary guarding assertions
* Fix PR for recent change
* Fix PR for recent change
* Fix for compiler warning
* Fix PR for recent change
* Fix PR for recent change
* Fix PR for recent change
* Fix for compiler warning
* Fixes for more compiler warnings
* Remove unused code
* Fix initialization of static maps
* Add scores and token types back, adapt gptneox
* Update llama.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update unicode.h
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update unicode.h
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Ported Starcoder and added some assertions
* Fix coding style
* Apply @jploski 's fix for missing tokens
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama.cpp : split llama_context_params into model and context params
ggml-ci
* fix metal build
* fix freq_base/scale default to model value
* llama-bench : keep the same model between tests when possible
* move n_threads to llama_context_params, add n_threads_batch
* fix mpi build
* remove kv_size(), cuda scratch fixes
* remove low-vram option
* add n_threads_batch to system info, refactor to get_system_info()
* add documentation about --threads-batch to the READMEs
* llama-bench fix
* main : fix rope freq/scale warning
* llama.cpp : add llama_get_model
common : add llama_tokenize from model
* remove duplicated ctx/model functions
ggml-ci
* cuda : print total VRAM used
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train
* remove unnecessary Adam(W) optimizer tensors.
reduces optimizer memory overhead from 7*modelsize to 2*modelsize.
additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t.
bumps training checkpoint file version, but old checkpoints can still be read.
new version with less tensors is saved.
* add gradient clipping to AdamW
* Fix reset of unused g->nodes and g->grads to NULL
* implement gradient checkpointing for training
reduces memory overhead from O(n_layer) to O(sqrt(n_layer))
as explained in readme of https://github.com/cybertronai/gradient-checkpointing
* remove unused compute buffer 3
* add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
* change AdamW decay parameter to work like the torch AdamW decay parameter
It is now relative to Adam learning rate `alpha*sched`.
Before that it was relative to `sched` only.
`alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1]
* change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT
* change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW
btw: the default weight decay parameter for torch.optim.AdamW is 0.01
* bug fixes for cross entropy loss
ggml_cross_entropy_loss: sums where not correctly added in workload of each thread
ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues
guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16
cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup.
so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance.
* fix test-grad0 for cross_entropy_loss
the second argument to cross_entropy_loss must sum up to 1 for each row
* fix test-grad0 for soft_max
dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)
* improve finite differences of test-grad0 by using double instead of float
* change cross_entropy_loss to output average over all rows
this helps keeping the loss and gradients in a sane range
* improve gradient checkpointing
sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal.
since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different:
```
given: n, u, v
objective: minimize(a*u+b*v) where a*b=n, a>0, b>0
b=n/a
minimize(a*u+v*n/a)
diff(a*u+v*n/a, a) = u - (v*n/a)/a
diff(a*u+v*n/a, a) == 0
u - (v*n/a)/a == 0
u == v*n/(a*a)
u*a*a = v*n
a*a = v*n/u
a = sqrt(n*v/u)
```
this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage.
* disable gradient checkpointing debug output
* llama : fix rope usage in train-text-from-scratch after ChatGLM change
* add more training parameters:
--enable-restart N Only for Adam optimizer. Enable restarts of cos-decay
--disable-restart N Only for Adam optimizer. Disable restarts of cos-decay
--opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero.
--opt-delta N Maximum delta for delta convergence test. Disabled when <= zero.
--opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero.
--adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero.
--adam-min-alpha N Adam minimum learning rate alpha, usually 0.1 * alpha
* replace memcpy with reshape operation so that the graph is not cut at the input
this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it
* remove unused function argument from get_example_targets_batch
* measure and print total training time
* add optimization callback to ggml_opt_resume_g
this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)).
can be used for dynamic learning schedule and setting input data for batches before each iteration
* use optimization callback in training
allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters
reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration
* add minimum number of tensor dimensions to apply weight decay (default 2)
this allows to not apply weight decay to bias parameters
* rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup
* fix increase of model.train_samples and model.train_tokens
now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations
* change sampling parameters for prediction after training to defaults of common.h
and clarify what is context for prediction and what are generated tokens
* tighten abs error bounds for cross_entropy_loss in test-grad0
* add conditional compilation of using F16 exp in flash attention
uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention
* tighten abs error bounds for flash_attn in test-grad0
* tighten abs error bounds for sqrt in test-grad0
* remove out-commented vectorized code of opt_adam
the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead
* ggml : update ggml_rms_norm_back with configurable eps
* llama training : fix ggml_rms_norm_back calls to pass configurable eps
* remove trailing whitespace
* add train function using automatic gradient checkpointing backward pass and allocator
* in train function replace add_inplace by regular add
because using add_inplace seems to result in different gradients
* don't use allocate hash_map on context
because the context has no_alloc=True when using memory allocator resulting in NULL data pointers
* correctly clone reshape and permute operations by also cloning tensor->nb values
* fix variable name and add missing type cast
* terminate recursive tensor cloning when reaching tensor without src tensors
* correctly clone view tensors by setting data pointers
without this the checkpointing would only work when being used together with memory allocator
* fix variable names
* swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn`
* add input tensors as checkpoints
so that recursive tensor cloning of gradient checkpointing terminates on input tensors
* fix variable name and add missing boolean negation
* make sure some tensors are not reallocated by inserting new temporary nodes depending on them:
output and parameter gradient tensors need to be available at the end of the graph execution
parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration
checkpoint tensors are allocated all together to reduce memory allocator fragmentation
afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs
* fix ASSERT to work with zero layers
* add training options whether to use allocator and/or unified training function
* integrate unified training function which may use memory allocator
the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing
* format name of cloned tensors with " (clone)" suffix
* set names for tensors in unified train function for easier debugging
* allocate graph on context using ggml_new_graph
* remove handwritten training functions
* remove unused training parameters "use_scratch" and "use_unified"
* remove trailing whitespace
* remove unused train params: mem_compute1_gb & mem_compute2_gb
mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions
mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)
* remove unused forward_batch function
* add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly
* only use ggml_allocr_alloc when tensor has NULL data and is no view
* fix test when to create temporary backward graph
temporary backward graph is only necessary when using checkpointing
* fix memory "leak" in optimizers
each iteration a new cplan with new memory for work data was allocated.
now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data.
* reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator
with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory.
the computation results are the same
* add API functions to access llama model tensors
* add stub example for finetuning, based on train-text-from-scratch
* move and remove code
* add API functions to access remaining model parameters:
mult, head and rot
* first draft for LORA finetune training
* remove const model and layer arguments in API functions for accessing model tensors
* bug fixes to make finetune compile
automatic allocator does not work yet
* add debug prints for training memory improvements
* fix names of lora tensors
* avoid stack overflow resulting from big ggml_cgraph
replace stack allocation and ggml_build_forward by ggml_new_graph in combination with ggml_build_forward_expand
* replace llama API functions to get model tensors by one function to get model tensor by name
LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
* remove unused call to not existing llama_get_layer_from_model
* implement ggml_compute_forward_out_prod_q_f32
* remove trailing whitespace
* add lora finetune support on quantized base model tensors
* add ggml_add_cast API function
this function works like ggml_add, but accepts a data type for the resulting tensor.
only supported for quantized src0 input.
* use ggml_add_cast in finetuning
lora-applied weights will now have data type F32, which improves gradients when finetuning quantized base models
* bug fix: actually use result type passed to ggml_add_cast
* make sure base model tensors data cannot be used in viewable operations
memory allocator would try to make lora application inplace on base model tensors.
since those are memory mapped this will result in memory access violations
* fix bug in ggml_out_prod which resulted in wrong n_dims of result tensors
* avoid keeping in memory ALL of the gradients
The problem here stems from ggml_graph_reset. This function is called in the optimization function, before each graph computation, to reset the gradients to zero. This required a unique memory slot for each gradient: allocating memory from a previosly freed memory location might lead to non-zero input gradients.
During ggml_compute_backward the gradients are build stepwise by adding or substracting new values, starting from a OP_NONE tensor which needs to contain zero-values. This requires the graph reset.
To avoid this I now remember in ggml_build_backward_expand the original OP_NONE gradient tensors in a hash table, which is passed to ggml_compute_backward. There instead of using add (or sub or similar) I test whether the existing gradient to be changed is a zero-valued-tensor by looking up its existence in the hash table. When it is such a zero-tensor it will not be modified, but replaced by the value to be added, otherwise the regular add (not inplace, allocator will take care of this) will be used. This way none of those zero-tensor values will be necessary in the final backward graph and more importantly they won't need a unique memory slot, just to make them zero.
* remove trailing whitespace
* remove debug prints and function to compute tensor data hash
* improve optimization iteration prints
* adjust maximal values to support finetuning 3B models
* change default finetune params lora_r and lora_alpha to match the n_rank parameters of 4
* bug fix: make sure finetune input gradient is allocated at begin and kept until end
* remove unnecessary src tensor from ggml_get_rows_back
we don't need data of src[2] for computation, only to setup the correct output shape.
remove dependency on src[2], so that allocator can work more freely.
the computational graph is still completely determined, because the output shape is naturally included.
this is similar to how ggml_reshape does it.
* remove unnecessary src tensor from ggml_repeat & ggml_repeat_back
we don't need data of src[1] for computation, only to setup the correct output shape.
remove dependency on src[1], so that allocator can work more freely.
the computational graph is still completely determined, because the output shape is naturally included
* resolve todo
allocator will only make it inplace when they are of the same type
* mixing multiple LORA adapters is now possible
pass more than one '--lora FNAME' argument to apply more than one LORA.
use '--lora-scaled FNAME S' when you want to specify a user-defined scale for an adapter.
* add option to save finetune output every N iterations
* also save latest finetune output with ITERATION="LATEST" and print where files are saved
saving with LATEST makes it easier to resume training from the latest checkpoint
the string "LATEST" can be configured with command line option "--fn-latest STR"
* update checkpoint train stats before saving via "--save-every"
* add command line option `--rank-wo N` for rank of wo tensor
* update finetune README
* fix dump_non_result_info_yaml to output multiple lora adapters
* bug fix: replace GGML_TYPE_SIZE[t] by ggml_type_size(t)
* replace llama_n_mult by llama_n_ff
* finetune bug fixes to compile with merged in code from master
* remove prediction related code to reduce duplicated code with main
use main instead
* reduce large memory overhead in train-text-from-scratch
all gradients had to be pinned so that graph_reset works correctly.
this is no longer necessary with the changes to ggml_compute_backward introduced in this PR.
* add comment explaining why finetune checkpoints are allocated in one block
* make default value of float member a float literal
* handle rms_norm and rope parameters the same as in train-text-from-scratch
* remove unused code
* remove vocab related code as it is unnecessary
* add LLM_KV_TRAINING_TYPE to train-text-from-scratch checkpoints
so that they can be differentiated from lora finetune checkpoints
* add gguf constants and load/save functions from train-text-from-scratch
* add load & save lora finetune checkpoints via gguf
* add python script to convert old finetune checkpoint files to gguf
* remove old checkpoint save & load code
* remove code to print data checksums which was used to verify correctness of new gguf code
* omit tokenization when training is disabled, only save llama lora adapter
training can be disabled by passing '-n 0' to finetune
* remove trailing whitespace
* update README.md
* implement ggml_compute_forward_repeat_f16
* avoid stack overflow of large cgraphs in test-grad0
* add ggml API functions ggml_unravel_index, ggml_get_i32_nd and its analogs for set and for f32
ggml_get_i32_1d, ggml_set_i32_1d, ggml_get_f32_1d, ggml_set_f32_1d now support non-contiguous tensors.
in case of non-contiguous tensor, the 1d index is unraveled into a multi index using ggml_unravel_index to be passed to '_nd' function equivalent.
this fixes a bug in test-grad0 which happens due to ggml_build_backward not building purely contiguous tensors anymore
* increase test-grad0 context mem size to accommodate for bigger cgraph
* add sanity check to ggml_compute_backward, asserting the correct shape of gradients
* fix ggml_acc_or_set to return tensor of correct shape
* remove unused 'inplace' argument from ggml_compute_backward function
inplace operations to add gradients are no longer created by ggml_compute_backward
use allocator to automatically make inplace operations
* add missing argument 'int i0' to ggml_get_i32_nd & ggml_set_i32_nd header declarations
* fix error message in ggml_allocr_alloc to display actual max_avail
* fix check_gradient
ggml_build_backward_expand was previously replaced by ggml_build_backward, but the assignment of forward graph to backward graph missing
* use tensor->view_src instead of ggml_is_view and get_view_source
* move gradient checkpointing code into ggml, new API function:
// build gradient checkpointing backward graph gb for gf using provided checkpoints
// gb_tmp will contain original backward graph with rewritten backward process nodes,
// but without the second forward pass nodes.
GGML_API void ggml_build_backward_gradient_checkpointing(
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
struct ggml_cgraph * gb_tmp,
struct ggml_tensor * * checkpoints,
int n_checkpoints);
* replace custom data getters and setters by ggml functions
* train-text-from-scratch can train (full finetune) gguf models
just pass the gguf model via `--checkpoint-in FN`.
after this, to continue training, pass the generated checkpoint instead of the original gguf model.
tested with smaller models, bigger models may exceed available memory.
use (LORA) finetune for those.
* remove trailing whitespace
* add option to save train-text-from-scratch output every N iterations
* update README.md
* fix warnings
* fix warnings
* remove finetune option to disable allocator
the allocator should always be used.
by making sure that it is always used it gets easier to implement automatic memory requirements computation
* add tensor checkpoints only when gradient checkpointing is enabled
* initialize opt ggml context if none was provided
* add ggml-alloc API function 'ggml_allocr_max_size' to get max size of alloc
GGML_API size_t ggml_allocr_max_size(struct ggml_allocr * alloc);
* finetune: automatically allocate all memory and changes to command line options
remove '--n_examples N' parameter, as it no longer makes sense to call optimization process multiple times in a loop.
add '--only_write_lora' command line option: will skip tokenization and training, to only write a llama.cpp comptabile LORA adapter.
remove memory buffer related command line options.
improve iteration console output.
* add finetune to Makefile
* update README.md
* print time per iteration and estimate remaining time
* increase measured alloc size by tensor_alignment
ggml_allocr_reset will reduce the given size by up to tensor_alignment-1
* fix README.md
* add some more allocator debug prints
* bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue
* revert last commit
"bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue"
"alloc was freeing an externally allocated tensor, because it calculated the end of allocator memory as alloc->data + alloc->max_size instead of alloc->data + alloc->size."
This is intentional to reduce the risk of freeing external tensors when measuring. Unless max_size is not properly calculated, I don't see why this is an issue.
* remove unnecessary "0x" before "%p" output
* move measurement memory segment to upper region of the address space
* update README.md
* fix printf format warnings
* add missing gguf_free in load_checkpoint_lora_file
* load default rms_norm and rope parameters from base model
* add gradient accumulation
specify number accumulation steps with '--grad-acc N'.
this will simulate a bigger batch size of grad_acc*batch.
* fix tracking of train_samples and train_tokens
* build : fix compile warnings
* ggml : fix L-BFGS linesearch loop
* improve finetune time measurement
fix printf warnings on system where int64_t is (long int).
change time datatypes to double because values get big with long training times.
exclude file saving from time measurement.
converge faster to actual time per iteration by removing very small first duration before first iteration was performed.
fix bug in output of total training time, the reported value was 1000 times to small.
* specify default lora rank with '--lora-r N'
'--lora-r N' will specify default rank for all tensors
'--rank-wq N', etc. will override this default rank for specific tensor types.
* fix gradient accumulation bug where the same batch was used for each microstep
* fix gradient accumulation bug where the same batch was used for each microstep
* support grouped-query-attention in ggml_flash_attn and ggml_flash_attn_back
k and v can now be repeated in q along ne[2]
in forward pass just use modulo to compute k and v indices, like ik2 = iq2 % nek2.
in backard pass this won't work as easy, because multiple threads will compete to accumulate to the same k->grad[:,ik1,ik2,ik3] and v->grad[:,iv1,iv2,iv3].
so we change the parallelization over q rows to be over k rows. this ensures non-overlapping (ik2,ik3) across threads.
in each thread we then iterate over the number of repetitions of k/v in q to compute iq2 as iq2 = ik2 + irep*nek2.
since ne2 is not the same for q,k and v we also change how the gradients are concatenated into the result tensor.
additionally the offsets of gradq, gradk and gradv in the result tensor are now memory aligned.
we also simplify the compute_backward part of flash_attn to use ggml_reshape instead of switching over the number of dimensions.
this needs a small change to ggml_reshape, removing the assertion of second argument to be contiguous.
since only the shape (ne) of the second reshape argument is of relevance, its memory layout (nb) is irrelevant -> it can very well be non-contiguous.
change test-grad0 to also test for repeated k/v in q.
this changes the rng and now results in small gradient differences in softmax. these solely come from using f16 exp table lookup in forward softmax: when temporarily changing softmax to use actual exp function, the reported gradient differences go away. gradient differences coming solely from f16 table lookup are acceptable.
added a note to explain this.
* add llama API functions to get grouped-query-attention n_head parameter 'n_head_kv'.
* fix finetune to support grouped-query-attention (using flash-attention)
note: ggml changes to ggml_out_prod are necessary to support grouped-query-attention without flash-attention.
* support broadcastable a in out_prod(a, b) and backward pass of broadcasting mul_mat(a, b)
* test broadcasting mul_mat backward pass
* decouple random number generator of each operation test
when changing one test the rng of others tests is not influenced anymore
* add comment briefly describing what ggml_repeat_back does
* simplify broadcasting mul_mat backward using ggml_repeat_back
* add cgraph evaluation order member and corresponding enum type
this controls in which order ggml_build_forward visits source nodes.
by default the nodes are visited left to right, i.e. src[0] first.
in some cases it is beneficial for ggml-alloc to visit in a different order.
two possible orders are supported: left-to-right (src[0] first) and right-to-left (src[0] last).
* measure max compute size for each cgraph eval order and use best order
this can bring huge memory savings:
e.g. codellama-34b with n_ctx=64, n_batch=1 goes from 92927.8mb down to 4627.6 MB
* remove unused command line options
* add sample start patterns and options to force new or by default resume last shuffling
* update shuffle rng state on reshuffle
* exclude known zero values from computations in flash_attn_f32 & flash_attn_back_f32
* remove probably unnecessary exception type flags from stringstream
* pass correct max number of tokens to llama_tokenize
* account for possible leading whitespace that will be added by tokenizer
e.g. '\t' will be tokenized by llama spm tokenizer to [29871, 12]
* use unrolled vec_mad in out_prod
y is vec_mad result vec.
x is vec_mad input vec.
v is vec_mad input scalar.
ggml_vec_mad_f32_unroll will internally loop over x and v with same y.
GGML_VEC_MAD_UNROLL is by default defined to 32.
This value is empirical optimized using performance test runs of out-prod in openllama-3b finetune with 256 context length and batch size 1. It gives 23% performance boost for out_prod.
Full measurements of out-prod runtime in ms:
unroll_xv unroll_yv
1 67014.643 87826.469
2 77117.552 89077.656
4 72091.311 109121.657
8 61077.543 88678.334
16 56914.67 79514.947
24 59024.595 84350.254
28 55952.446 83368.73
32 51476.658 85177.745
36 55973.792 84659.92
40 55139.616 93844.738
48 60736.392 93330.267
64 99856.878 116994.99
Second column is when unrollying yv instead of xv
* set lora_alpha to value of lora_r if it is not set via command line
otherwise only changing lora_r will change scaling of lora adapter used in prediction
* reshuffle original sample order instead of the previous shuffled order
otherwise resumed reshuffle will not result in same sample order
* block tiling for out-prod inspired by mul-mat
block sizes are empirically optimized
roughly doubles the flops of out-prod
* exclude some more known zero values from computations in flash_attn_f32 & flash_attn_back_f32
* add static keywords
* remove outcommented old code
* update train-text-from-scratch with tokenization, sample selection and shuffling from finetune
* remove lbfgs related train parameters
* move common train functions into common/train.[h|cpp]
* move train state into struct train_state
* move train data saving code into callback to unify code of opt_callback
train_params are still different in finetune and train-text-from-scratch, so it can't yet be moved to train.h|cpp
* move common train params into common/train
* move common opt_callback into common/train
* fix consume_common_train_arg
* save and load head_count_kv in lora checkpoints
* increase train_samples by used_samples instead of number of batches
on batch can contain more than one sample when option "fill_with_next_samples" is used
* fix usage of llama_tokenize
* remove static from process_escape since we need it exposed in header
* fix code formating of long function declarations
* fix condition in load_train_state_gguf
* use die("msg") instead of replace GGML_ASSERT(!"msg") or throw std::runtime_error("msg")
* fix saving and loading of training type
* remove terminating '\0' from tokenization
(llama_tokenize is now passed the string length instead of relying on terminating '\0')
* fix compile warnings
* fix compile warnings
* use new/delete for train_state instead of malloc/free
using malloc may result in seg faults when trying to assign string fields
* assert that sample_count > 0, avoiding division by zero
* fix frand to return value in interval [0,1)
* add train option "--sample-random-offsets"
Use samples beginning at random offsets.
The offset is only applied to the first sample in each batch context window.
Together with "--fill-with-next-samples" this may help for training endless text generation.
For example given a dataset containing samples "abcd", "ABCD", "0123".
With context size of 8 and options "--fill-with-next-samples", "--no-separate-with-eos", "--no-separate-with-bos",
the context windows of batches could only be filled with "abcdABCD", "ABCDabcd", "0123abcd", etc.
With "--sample-random-offsets" it can also be filled with "23abcdAB", "bcd0123A", etc.
* deduplicate code into function
* remove n_rot hparam, as it must always be hparam.n_embd_head()
* align code
* assert correct base model tensor shapes
* move some params from lora hparams into model hparams and load model params from gguf
this equalizes the model definition in finetune and text-from-scratch and removes the need for additional llama api functions to get model parameters
* remove now unnecessary llama API functions to get model params that where added by this PR
* train-text-from-scratch: automatically allocate model tensors, remove option '--mem-model N'
* train-text-from-scratch: automatically allocate opt context
* train-text-from-scratch: automatically allocate input tensors
* train-text-from-scratch: automatically allocate compute memory
* remove unused options and equalize train-text-from-scratch with finetune
* initialize opt->loss_after with zero
* add export-lora program
* remove trailing whitespace
* add export-lora build in Makefile
* remove unused struct tensor_info from export-lora
* add export-lora build dependency to llama
because it depends on common, which depends on llama
* update finetune README.md
* cancel optimization when specified number of epochs is completed
* improve handling of export-lora arguments
print errors and warnings when files could not be read or created
* Fix export-lora.cpp "not enough space in the context's memory pool" (#1)
* Fix export-lora.cpp "not enough space in the context's memory pool"
Without this patch, export-lora would sometimes error with "not enough space in the context's memory pool (needed 656784, available 656800)".
* increase required context size by 5*GGML_MEM_ALIGN instead of plain 16
---------
Co-authored-by: xaedes <xaedes@gmail.com>
* improve handling of not yet supported tensor types
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: meatbag-18a <145869052+meatbag-18a@users.noreply.github.com>
* Fix für #2721
* Reenable tokenizer test for LLaMa
* Add `console.cpp` dependency
* Fix dependency to `common`
* Fixing wrong fix.
* Make console usage platform specific
Work on compiler warnings.
* Adapting makefile
* Remove trailing whitespace
* Adapting the other parts of the makefile
* Fix typo.
* Fixing the last deviations from sentencepiece indicated by test-tokenizer-1
* Simplify logic
* Add missing change...
* Fix ugly compiler warning
* llama_tokenize should accept strings containing NUL now
* Adding huichen's test case
* Fix für #2721
* Reenable tokenizer test for LLaMa
* Add `console.cpp` dependency
* Fix dependency to `common`
* Fixing wrong fix.
* Make console usage platform specific
Work on compiler warnings.
* Adapting makefile
* Remove trailing whitespace
* Adapting the other parts of the makefile
* Fix typo.
* tests : add a C compliance test
* make : build C compliance test by default
* make : fix clean and make sure C test fails on clang
* make : move -Werror=implicit-int to CFLAGS
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train
* remove unnecessary Adam(W) optimizer tensors.
reduces optimizer memory overhead from 7*modelsize to 2*modelsize.
additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t.
bumps training checkpoint file version, but old checkpoints can still be read.
new version with less tensors is saved.
* add gradient clipping to AdamW
* Fix reset of unused g->nodes and g->grads to NULL
* implement gradient checkpointing for training
reduces memory overhead from O(n_layer) to O(sqrt(n_layer))
as explained in readme of https://github.com/cybertronai/gradient-checkpointing
* remove unused compute buffer 3
* add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
* change AdamW decay parameter to work like the torch AdamW decay parameter
It is now relative to Adam learning rate `alpha*sched`.
Before that it was relative to `sched` only.
`alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1]
* change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT
* change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW
btw: the default weight decay parameter for torch.optim.AdamW is 0.01
* bug fixes for cross entropy loss
ggml_cross_entropy_loss: sums where not correctly added in workload of each thread
ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues
guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16
cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup.
so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance.
* fix test-grad0 for cross_entropy_loss
the second argument to cross_entropy_loss must sum up to 1 for each row
* fix test-grad0 for soft_max
dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)
* improve finite differences of test-grad0 by using double instead of float
* change cross_entropy_loss to output average over all rows
this helps keeping the loss and gradients in a sane range
* improve gradient checkpointing
sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal.
since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different:
```
given: n, u, v
objective: minimize(a*u+b*v) where a*b=n, a>0, b>0
b=n/a
minimize(a*u+v*n/a)
diff(a*u+v*n/a, a) = u - (v*n/a)/a
diff(a*u+v*n/a, a) == 0
u - (v*n/a)/a == 0
u == v*n/(a*a)
u*a*a = v*n
a*a = v*n/u
a = sqrt(n*v/u)
```
this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage.
* disable gradient checkpointing debug output
* llama : fix rope usage in train-text-from-scratch after ChatGLM change
* add more training parameters:
--enable-restart N Only for Adam optimizer. Enable restarts of cos-decay
--disable-restart N Only for Adam optimizer. Disable restarts of cos-decay
--opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero.
--opt-delta N Maximum delta for delta convergence test. Disabled when <= zero.
--opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero.
--adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero.
--adam-min-alpha N Adam minimum learning rate alpha, usually 0.1 * alpha
* replace memcpy with reshape operation so that the graph is not cut at the input
this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it
* remove unused function argument from get_example_targets_batch
* measure and print total training time
* add optimization callback to ggml_opt_resume_g
this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)).
can be used for dynamic learning schedule and setting input data for batches before each iteration
* use optimization callback in training
allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters
reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration
* add minimum number of tensor dimensions to apply weight decay (default 2)
this allows to not apply weight decay to bias parameters
* rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup
* fix increase of model.train_samples and model.train_tokens
now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations
* change sampling parameters for prediction after training to defaults of common.h
and clarify what is context for prediction and what are generated tokens
* tighten abs error bounds for cross_entropy_loss in test-grad0
* add conditional compilation of using F16 exp in flash attention
uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention
* tighten abs error bounds for flash_attn in test-grad0
* tighten abs error bounds for sqrt in test-grad0
* remove out-commented vectorized code of opt_adam
the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead
* ggml : update ggml_rms_norm_back with configurable eps
* llama training : fix ggml_rms_norm_back calls to pass configurable eps
* remove trailing whitespace
* add train function using automatic gradient checkpointing backward pass and allocator
* in train function replace add_inplace by regular add
because using add_inplace seems to result in different gradients
* don't use allocate hash_map on context
because the context has no_alloc=True when using memory allocator resulting in NULL data pointers
* correctly clone reshape and permute operations by also cloning tensor->nb values
* fix variable name and add missing type cast
* terminate recursive tensor cloning when reaching tensor without src tensors
* correctly clone view tensors by setting data pointers
without this the checkpointing would only work when being used together with memory allocator
* fix variable names
* swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn`
* add input tensors as checkpoints
so that recursive tensor cloning of gradient checkpointing terminates on input tensors
* fix variable name and add missing boolean negation
* make sure some tensors are not reallocated by inserting new temporary nodes depending on them:
output and parameter gradient tensors need to be available at the end of the graph execution
parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration
checkpoint tensors are allocated all together to reduce memory allocator fragmentation
afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs
* fix ASSERT to work with zero layers
* add training options whether to use allocator and/or unified training function
* integrate unified training function which may use memory allocator
the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing
* format name of cloned tensors with " (clone)" suffix
* set names for tensors in unified train function for easier debugging
* allocate graph on context using ggml_new_graph
* remove handwritten training functions
* remove unused training parameters "use_scratch" and "use_unified"
* remove trailing whitespace
* remove unused train params: mem_compute1_gb & mem_compute2_gb
mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions
mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)
* remove unused forward_batch function
* add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly
* only use ggml_allocr_alloc when tensor has NULL data and is no view
* fix test when to create temporary backward graph
temporary backward graph is only necessary when using checkpointing
* fix memory "leak" in optimizers
each iteration a new cplan with new memory for work data was allocated.
now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data.
* reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator
with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory.
the computation results are the same
* add missing lctx argument to get_example_targets_batch
* implement llama model file saving using gguf
checkpoint loading and saving disabled, to be replaced by loading and saving via gguf
* implement loading/saving of checkpointing files using GGUF
* bug fixes
* add checkpoint file version for future compatibility
* update readme with gguf filenames
* save & load opt->just_initialized value
* add first draft for checkpoint conversion script
* add gguf arch and ftype
* save opt parameter counter as uint64
* add gguf key and tensor names for optimizer and training
* add layer_norm_rms_eps to checkpoint convert script
* use same GGUF_GET_KEY macro as in llama.cpp
* use norm_rms_eps, and rope parameters and command line options to set them
* fix memory corruption bug in gguf
ctx->kv and ctx->infos was reallocated using not-aligned realloc, but freed with aligned free.
to fix this a GGML_ALIGNED_REALLOC was added, but there is no posix_memalign_realloc function.
so on non-windows and non-mingw32 platforms we fall back to aligned malloc, followed by copying
and freeing the old data.
* add gguf example cmake file
* bug fixes in tokenize_file
* bug fixes in load_llama_model_gguf
* bug fix: init model when no checkpoint was loaded
* bug fix in read_tensor_by_name
* bug fix in load_opt_context_gguf
* avoid printing lots of spaced on the unusual case that loss gets nan
* set name of tensors with empty name from what was read from gguf
* remove trailing whitespace
* print data checksums before saving and after loading to verify correctness
* bug fixes for convert-train-checkpoint-to-gguf
* temporarily add code to write old checkpoint files
used to verify that old checkpoint files are correctly converted to gguf
* bug fixes for convert-train-checkpoint-to-gguf.py loading checkpoints with opt_version=0
* remove code used to verify correctness of checkpoint file conversion
* remove trailing whitespace
* remove prediction related code
use main for prediction, it is better optimized
* update train-text-from-scratch README.md
* fix non-windows GGML_ALIGNED_REALLOC
* add missing blank line at end of file
* remove GGML_ALIGNED_REALLOC and use normal malloc/realloc/free for gguf ctx->kv & ctx->infos
* train : fix compile warnings
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* tests : write a Python tokenizer test (wip)
* llama : prefix input text for tokenization with whitespace
* llama : distinguish pieces from decoded text + fix detokenization
* common : add comments
* examples : no longer manually add leading space when tokenizing
* tests : use Python to generate tokenizer tests for C++
* tests : add option to tokenize text files
ggml-ci
* tests : add test-tokenizer-1.py
* llama.cpp : fix LF token
* hellaswag : move the concat space for clarity
* tests : add falcon tests (py + cpp, currently do not pass Unicode)
ggml-ci
* common : temporary separate llama_detokenize calls for SPM and BPE
---------
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
* llama.cpp : fix spm whitespace escaping + clean up
* main.cpp : spm - add whitespace in front of prompt
* test-tokenizer-0.cpp : spm - add whitespace in front of prompt
* adds simple llama grammar tests
* fix lint and add Makefile
* 0 terminate code_points
* avoid dangling pointers in candidate cleanup
* cleanup grammar at end of test
* fix hellaswag print format, cast away warning in test-double-float
* c++11 cannot use designated initializers
* add static to test-grad0.c internal functions
* use memcpy in test-double-float.c
* port c tests to c++
* use initializer list for ggml_init_params
* make rms_norm_eps a parameter
* add rms_norm_eps to command line
* fix baby llama, test-grad0
* use scientific notation for eps param in the help
ggml-ci