Commit Graph

78 Commits

Author SHA1 Message Date
Johannes Gäßler
424c5d00a9 ggml/examples: add backend support for numerical optimization (ggml/949)
* CUDA eval works

* stochastic gradient descent op

* Adam except decay

* CUDA CROSS_ENTROPY_LOSS_BACK

* CUDA mnist-fc training works

* backend CLI arg

* refactor gguf load

* remove sched from opt_step_adam

* implement l1 regularization (weight decay)

* extra call to add optimizer

* initialize gradients with ggml_graph_reset

* gradient accumulation

* increment iter per eval instead of epoch

* adjust backend interfaces

* fix ggml_graph_reset without backend

* fix ggml graph export/import

* fixup

* rename

* revert ggml_opt changes

* more general CUDA repeat_back

* update documentation, fix CNN

* validation split

* add clarifying comment

* optimize PyTorch training

* adjust buffer size, thread count

* fix 0.0f validation split

* Update examples/mnist/mnist-common.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix gradient accumulation

* tensor flag for accumulators -> tensor hash set

* Update include/ggml.h

Co-authored-by: slaren <slarengh@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* fix test prints

* Update src/ggml-backend.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* better CUDA support for noncontiguous out_prod

* add comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-09-20 21:15:05 +03:00
Georgi Gerganov
d6a04f872d
ggml : hide ggml_object, ggml_cgraph, ggml_hash_set (#9408)
* ggml : hide ggml_object, ggml_cgraph, ggml_hash_set

ggml-ci

* ggml : add ggml-impl.h to backends

* ggml : fix compiler warnings

ggml-ci

* ggml : add assert upon adding nodes
2024-09-12 14:23:49 +03:00
Georgi Gerganov
a876861455 metal : update support condition for im2col + fix warning (#0) 2024-09-08 11:05:55 +03:00
Johannes Gäßler
202084d31d tests: add gradient tests for all backends (ggml/932)
* tests: add gradient checking to test-backend-ops

* remove old comment

* reorder includes

* adjust SIN/COS parameters

* add documentation, use supports_op if possible
2024-09-08 11:05:55 +03:00
Salvatore Mesoraca
efe6a83e30 ggml : fix cont with transposed tensors when one dimension is 1 (ggml/934)
* ggml_cont: fix issue with transposed tensors when one dimension is 1

when using multiple threads, it is not enough
to check for the tensors to be contiguous for
ggml_compute_forward_dup_same_cont to work correctly.
The tensors strides also need to match.

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

* Add ggml_cont tests

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

* Remove dead code

it isn't possible to reach this code because
all these functions are invoked by ggml_compute_forward_dup
if and only if src0->type != dst->type

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

* Make ggml_compute_forward_dup_same_cont work with contiguous tensors

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

---------

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-08 11:05:55 +03:00
compilade
9bc6db28d0
ggml-quants : ternary packing for TriLMs and BitNet b1.58 (#8151)
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b

* ggml-quants : faster 1.625 bpw AVX2 vec_dot

Not using a lookup table anymore makes it match q4_0 speed.

* gguf-py : fix formatting

* llama : remove spaces on empty line

* ggml-quants : subtract 1 when back in epi8

This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.

* ggml-quants : Q2_2 now faster than Q4_K on with AVX2

* ggml-quants : cleanup Q1_3 code formatting

* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3

* ggml-quants : use ceiling division when quantizing q1_3

* convert-hf : simplify BitNet pre-quantization

This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.

* convert-hf : allow converting the weird BitNet 1.3B

Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.

* bitnet : replace 1.58b with b1.58, as in the paper

* ggml-quants : fix build failure on Windows

* ggml-quants : attempt to fix Arm 32-bit support

* ggml : add some informative comments in q1_3 vec_dot

* ggml : add TQ1_0 and TQ2_0 ternary quantization types

* ggml : even faster TQ2_0

* ggml : also faster TQ1_0

Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.

* ggml : fix build issues in certain environments

* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0

* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat

The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.

* ggml : remove q1_3 and q2_2

No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.

* llama : remove the separate scale tensors of BitNet b1.58

They won't be needed, since the remaining ternary quant types have
built-in scales.

* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency

* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot

Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.

* ggml-quants : remove comment about possible format change of TQ2_0

Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.

* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0

* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0

This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.

* convert : allow direct conversion to TQ1_0 and TQ2_0

The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.

* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0

Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.

* ggml-quants : allow using ARM dot product instructions for TQ1_0

* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support

* ggml : remove unused ggml_mul special case

It would otherwise conflict with the more general
optimization coming with Mamba-2.

* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators

* test-backend-ops : add TQ1_0 and TQ2_0 comments for later

Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.
2024-09-05 21:48:47 -04:00
Georgi Gerganov
231cff5f6f sync : ggml 2024-08-27 22:41:27 +03:00
Georgi Gerganov
fc18425b6a
ggml : add SSM Metal kernels (#8546)
* ggml : add ggml_ssm_conv metal impl

* ggml : add ssm_scan metal impl

ggml-ci
2024-08-26 17:55:36 +03:00
slaren
0c41e03ceb
metal : gemma2 flash attention support (#9159) 2024-08-26 11:08:59 +02:00
Johannes Gäßler
e11bd856d5
CPU/CUDA: Gemma 2 FlashAttention support (#8542)
* CPU/CUDA: Gemma 2 FlashAttention support

* apply logit_softcap to scale in kernel

* disable logit softcapping tests on Metal

* remove metal check
2024-08-24 21:34:59 +02:00
zhentaoyu
4f8d19ff17
[SYCL] Fix SYCL im2col and convert Overflow with Large Dims (#9052)
* sycl: fix im2col overflow and sync with cuda

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* sycl: fix convert overflow

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* sycl: fix convert and dequantize

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* sycl: fix ib in dmmv

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* sycl:refine convert

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* sycl: move downsample global_range into common

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* test: add im2col and convert test cases

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* test: make new cases only in sycl

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* test: comment new test_cases for only local testing

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

---------

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>
2024-08-20 23:06:51 +08:00
Molly Sophia
2d5dd7bb3f
ggml : add epsilon as a parameter for group_norm (#8818)
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-08-06 10:26:46 +03:00
0cc4m
064cdc265f
vulkan : fix Qantized Mat-Vec Mul on AMD GPUs for ncols < 64 (#8855)
* Fix Vulkan mul mat vec invalid results when ncols < warp size

* Only run backend ops mul mat vec block size test if block size not already covered
2024-08-05 08:52:55 +03:00
Mengqing Cao
e09a800f9a
cann: Fix ggml_cann_im2col for 1D im2col (#8819)
* fix ggml_cann_im2col for 1D im2col

* fix build warning
2024-08-02 16:50:53 +08:00
slaren
7a11eb3a26
cuda : fix dmmv cols requirement to 2*GGML_CUDA_DMMV_X (#8800)
* cuda : fix dmmv cols requirement to 2*GGML_CUDA_DMMV_X

* update asserts

* only use dmmv for supported types

* add test
2024-08-01 15:26:22 +02:00
slaren
2b1f616b20
ggml : reduce hash table reset cost (#8698)
* ggml : reduce hash table reset cost

* fix unreachable code warnings after GGML_ASSERT(false)

* GGML_ASSERT(false) -> GGML_ABORT("fatal error")

* GGML_ABORT use format string
2024-07-27 04:41:55 +02:00
slaren
87e397d00b
ggml : fix quant dot product with odd number of blocks (#8549)
* ggml : fix iq4_nl dot product with odd number of blocks

* ggml : fix odd blocks for ARM_NEON (#8556)

* ggml : fix iq4_nl dot product with odd number of blocks

* ggml : fix q4_1

* ggml : fix q5_0

* ggml : fix q5_1

* ggml : fix iq4_nl metal

ggml-ci

* ggml : fix q4_0

* ggml : fix q8_0

ggml-ci

* ggml : remove special Q4_0 code for first 2 blocks

* ggml : fix sumf redefinition

---------

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-07-19 17:17:27 +02:00
hipudding
1bdd8ae19f
[CANN] Add Ascend NPU backend (#6035)
* [CANN] Add Ascend NPU backend

Ascend is a full-stack AI computing infrastructure for industry
applications and services based on Huawei Ascend processors and
software.

CANN (Compute Architecture of Neural Networks), developped by
Huawei, is a heterogeneous computing architecture for AI.

Co-authored-by: wangshuai09 <391746016@qq.com>

* delete trailing whitespaces

* Modify the code based on review comment

* Rename LLAMA_CANN to GGML_CANN

* Make ggml-common.h private

* add ggml_cann prefix for acl funcs

* Add logging for CANN backend

* Delete Trailing whitespace

---------

Co-authored-by: wangshuai09 <391746016@qq.com>
2024-07-17 14:23:50 +03:00
Georgi Gerganov
6847d54c4f tests : fix whitespace (#0) 2024-07-08 12:23:00 +03:00
John Balis
fde13b3bb9 feat: cuda implementation for ggml_conv_transpose_1d (ggml/854)
* conv transpose 1d passing test for 1d input and kernel

* working for different input and output channel counts, added test for variable stride

* initial draft appears to work with stride other than 1

* working with all old and new conv1d  tests

* added a test for large tensors

* removed use cuda hardcoding

* restored test-conv-transpose.c

* removed unused arugments, and fixed bug where test failure would cause subsequent tests to fail

* fixed accumulator bug

* added test to test-backend-ops

* fixed mistake

* addressed review

* fixed includes

* removed blank lines

* style and warning fixes

* return failure when test fails

* fix supports_op

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-07-08 12:23:00 +03:00
slaren
0e0590adab
cuda : update supports_op for matrix multiplication (#8245) 2024-07-02 09:39:38 +03:00
Georgi Gerganov
f3f65429c4
llama : reorganize source code + improve CMake (#8006)
* scripts : update sync [no ci]

* files : relocate [no ci]

* ci : disable kompute build [no ci]

* cmake : fixes [no ci]

* server : fix mingw build

ggml-ci

* cmake : minor [no ci]

* cmake : link math library [no ci]

* cmake : build normal ggml library (not object library) [no ci]

* cmake : fix kompute build

ggml-ci

* make,cmake : fix LLAMA_CUDA + replace GGML_CDEF_PRIVATE

ggml-ci

* move public backend headers to the public include directory (#8122)

* move public backend headers to the public include directory

* nix test

* spm : fix metal header

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* scripts : fix sync paths [no ci]

* scripts : sync ggml-blas.h [no ci]

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-26 18:33:02 +03:00
slaren
b6b9a8e606
fix CI failures (#8066)
* test-backend-ops : increase cpy max nmse

* server ci : disable thread sanitizer
2024-06-23 13:14:45 +02:00
Calvin Laurenson
43b35e38ba
Add support for sqrt on CUDA (#7953)
* cuda sqrt support

* enable cuda in pca

* fix comments in pca

* add test

* add sqrt to ggml_backend_cuda_supports_op

* fix test

* new line

* Use F32 sqrtf instead of F64 sqrt

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-06-17 00:23:04 +02:00
Georgi Gerganov
a9cae48003
tests : add non-cont unary tests (#7857)
* tests : add non-cont unary tests

* ggml : update unary asserts and "supports_op"

ggml-ci
2024-06-12 16:00:22 +03:00
Georgi Gerganov
2b3389677a
ggml : refactor rope norm/neox (#7634)
* ggml : unify rope norm/neox (CPU)

* ggml : fix compile warning

* ggml : remove GLM rope mode

ggml-ci

* metal : better rope implementation

ggml-ci

* cuda : better rope implementation

ggml-ci

* naming : n_orig_ctx -> n_ctx_orig

ggml-ci

* dev : add reminders to update backends

ggml-ci

* vulkan : fix ggml_rope_ext() usage

* cuda : fix array size + indents

ggml-ci
2024-06-05 11:29:20 +03:00
Johannes Gäßler
e141ce624a
Fix FlashAttention debug test, FP32 assert (#7684) 2024-06-01 23:26:10 +02:00
Johannes Gäßler
9b596417af
CUDA: quantized KV support for FA vec (#7527)
* CUDA: quantized KV support for FA vec

* try CI fix

* fix commented-out kernel variants

* add q8_0 q4_0 tests

* fix nwarps > batch size

* split fattn compile via extern templates

* fix flake8

* fix metal tests

* fix cmake

* make generate_cu_files.py executable

* add autogenerated .cu files

* fix AMD

* error if type_v != FP16 and not flash_attn

* remove obsolete code
2024-06-01 08:44:14 +02:00
Georgi Gerganov
fb76ec31a9
ggml : fix YARN + add tests + add asserts (#7617)
* tests : add rope tests

ggml-ci

* ggml : fixes (hopefully)

ggml-ci

* tests : add non-cont tests

ggml-ci

* cuda : add asserts for rope/norm + fix DS2

ggml-ci

* ggml : assert contiguousness

* tests : reduce RoPE tests

ggml-ci
2024-05-29 20:17:31 +03:00
Georgi Gerganov
cce3dcffc5
cuda : non-cont concat support (#7610)
* tests : add non-cont concat tests

* cuda : non-cont concat support

ggml-ci
2024-05-29 15:38:26 +03:00
Georgi Gerganov
0548a4187f
ggml : generalize GGML_OP_CONCAT (#7563)
* ggml : generalize GGML_OP_CONCAT (WIP)

ggml-ci

* tests : add dim != 2 tests

* metal : generalize concat kernel

* tests : naming

* cuda : generalize concat kernel

ggml-ci

* sycl : add warning and assert

* ggml : fix op params handling

* metal : bugfix kernel

ggml-ci

* ggml : reimplement CPU and Metal

* cuda : add asserts

ggml-ci

* ggml : fix ptrs

ggml-ci
2024-05-28 11:04:19 +03:00
Georgi Gerganov
3e5faa8503
cuda : fix rope + add tests (#7452)
* cuda : fix rope pos data

ggml-ci

* ggml : drop mode & 1 == 1 support for ggml_rope

ggml-ci

* ggml : support freq_factors for f16 rope (CPU)

ggml-ci

* tests : add rope tests using frequency factors

ggml-ci
2024-05-22 11:01:35 +03:00
liuwei-git
201cc11afa
llama : add phi3 128K model support (#7225)
* add phi3 128k support in convert-hf-to-gguf

* add phi3 128k support in cuda

* address build warnings on llama.cpp

* adjust index value in cuda long rope freq factors

* add long rope support in ggml cpu backend

* make freq factors only depend on ctx size

* remove unused rope scaling type 'su' frin gguf converter

* fix flint warnings on convert-hf-to-gguf.py

* set to the short freq factor when context size is small than trained context size

* add one line of comments

* metal : support rope freq_factors

* ggml : update ggml_rope_ext API to support freq. factors

* backends : add dev messages to support rope freq. factors

* minor : style

* tests : update to use new rope API

* backends : fix pragma semicolons

* minor : cleanup

* llama : move rope factors from KV header to tensors

* llama : remove tmp assert

* cuda : fix compile warning

* convert : read/write n_head_kv

* llama : fix uninitialized tensors

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-21 23:28:32 +03:00
slaren
05834841dc
ggml : fix quants nans when all the group weights are very close to zero (#7313) 2024-05-18 02:39:54 +02:00
John Balis
48aa8fd1f2
ggml : add ggml_upscale_ext (ggml/814)
* initial commit with CPU implementation of upscale to shape and test, cuda implementation next

* experimental commit to see if dst shape is correct

* test version

* test

* removed unnecessary params

* refactor

* fixed tests

* ggml : metal impl + cleanup + sycl dev warnings

* patched ggml_upscale cuda op to handle non-contiguous tensors, added test for non-contiguous behavior

* metal : fix upsacle op to support nb00 + style

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-15 13:23:33 +03:00
Georgi Gerganov
e8a7fd4fb0
metal : support FA without mask + add asserts (#7278)
* ggml : fa without mask + add asserts

ggml-ci

* metal : support non-contiguous KV

ggml-ci
2024-05-14 19:09:30 +03:00
Johannes Gäßler
dc685be466
CUDA: add FP32 FlashAttention vector kernel (#7188)
* CUDA: add FP32 FlashAttention vector kernel

* fixup! CUDA: add FP32 FlashAttention vector kernel

* fixup! fixup! CUDA: add FP32 FlashAttention vector kernel

* fixup! fixup! fixup! CUDA: add FP32 FlashAttention vector kernel
2024-05-12 19:40:45 +02:00
Georgi Gerganov
9cb317f77e
ggml : full ALiBi support (#7192)
* ggml : full ALiBi support

* ggml : update ggml_soft_max_ext() CUDA, SYCL

* ggml : ggml_flash_attn_ext() support ALiBi (CPU)

* ggml : ggml_flash_attn_ext() support ALiBi (Metal)

* ggml : fix warning

* ggml : ggml_flash_attn_ext() support ALiBi (CUDA)

ggml-ci

* ggml : fix assert message

* vulkan : add dev notes

* ggml : require mask when using ALiBi

ggml-ci

* convert : fix convert for refact models
2024-05-11 10:32:41 +03:00
Johannes Gäßler
a743d76a01
CUDA: generalize FP16 fattn vec kernel (#7061)
* CUDA: generalize FP16 fattn vec kernel

* disable unsupported head sizes for AMD in test

* try AMD fix

* fix batch size 2-8

* partially revert changes
2024-05-09 14:32:02 +02:00
Justine Tunney
3855416027
ggml : introduce bfloat16 support (#6412)
* Introduce bfloat16 support

Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as
their canonical floating point format.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───┐
    0b0000000000000000 brain16

This encoding has the same number of exponent bits as float32. That
makes conversion relatively straightforward, even in the absence of
hardware support. For example, converting brain16 to binary32 means
simply shifting 16 bits to the left.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───────────────────┐
    0b00000000000000000000000000000000 IEEE binary32

The issue is that converting bf16 to fp16 can result in information
loss. Only 13% of bf16 numbers can be precisely represented in fp16
which in practice ends up being 99.71% of Mistral 7b v0.2's weights
however there is currently no way other than fp32 to get the others

      ┌sign
      │
      │  ┌exponent
      │  │
      │  │    ┌mantissa
      │  │    │
      │┌─┴─┐┌─┴──────┐
    0b0000000000000000 IEEE binary16

This change fixes that, by adding a bf16 data type to GGML. Support
for CPU inference has been implemented along with optimizations for
the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2
improves somewhere around -0.0024 to -0.0046 compared to using fp16

* Remove GGML code that's not needed

* Minimize the GGML API surface area for BF16

* Remove bf16 luts

* Make the GGML header look nicer

* Fix documentation

* Apply ggerganov's fixes for test-backend-ops

* Add BF16 code for new ggml_validate_row_data() function
2024-05-08 09:30:09 +03:00
Georgi Gerganov
9c67c2773d
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API

* ggml : fix GQA support in ggml_flash_attn_ext

* ggml : online attention (CPU)

* metal : initial implementation

* metal : f16 precision

* metal : reduce branches

* metal : specialize for head size

* wip : 8 rows per simd group

* wip : 4 rows per simd group

* wip : template for rows per warp

* metal : parallelize across KV size

* metal : parallel reduce across heads

* metal : efficient flash_attn_f16 implementation

* metal : avoid redundant loads of the attention

* metal : scale and mask in matrix form

* metal : fix comment

* llama : avoid ggml_cast, use F32 query

* metal : add parallel reduce version (disabled)

* metal : move output into local memory + optimize

- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments

* metal : add tests, fix scaling, support C > 32

* metal : improve precision

* ggml : fix f16 mad

* metal : minor

* metal : support Q > 8

* tests : add ATTN tests

* metal : disable buffer allocation logs

* tests : more

* metal : faster inner loop for C == 32

* metal : fix array initialization

* tests : ifdef

* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext

* ggml : fix ggml_soft_max mask requirement

* cuda : fix soft_max to use correct mask size

* cuda : add flash_attn kernel (wip)

* metal : optimize softmax for C > 32

* metal : optimize softmax

* tests : minor fix

* cuda : avoid zeroing fragments

* tests : update dims

* cuda : fix __hisinf() result check

* cuda : avoid warp_reduce for smax

* cuda : use int instead of int64_t

Noticeably improves performance (thanks to Johannes)

* cuda : make loops use the same loop values

Thanks Johannes again for the tip

* cuda : unroll some of the loops

* cuda : avoid __hisinf branches

* cuda : use half2 in softmax

* cuda : switch to 1 warp for bs > 16

* cuda : speed-up reduce part of the kernel

* cuda : unroll Q*K^T loop

* cuda : fix -INF block check

* cuda : simplify softmax

* cuda : fix matrix names

* cuda : minor

* llama : adapt to F16 KQ_pos

* llama : adapt new models to F16 KQ_mask

* ggml : fix F16 store (ARM NEON)

* llama : fix type of KQ_mask and KQ_pos

* ggml : fix CPU soft_max

* tests : add hs=256

* cuda : fix build

* metal : improve perf via smaller int registers

* cuda : adapt soft_max to F16 mask and pos

* CUDA: faster FlashAttention, kernel for bs == 1

* 16 cols for Phi-2

* no vec for hs, no hs==256 ncols==32 for Volta

* adjust kernel selection logic

* 4 warps, 256 stride for all D

* no ncols == 64

* Multiple parallel blocks for batch size 1

* fix compile warnings

* fix excessive KQ_b loads

* fix cmake build

* fix KV cache padding, NaN from INFINITY (#6438)

* llama : flash_attn cparam + fix defrag

* server: support flash_attn param

* server: bench: enable flash_attn param

* CUDA: refactor host code, dyn. par. blocks

* fix flash_attn_vec_f16 race condition

* flush softmax exp below threshold to 0

* store temp KQ in registers

* Calculate KQ as FP32 if KQV has GGML_PREC_F32

* Add __hgt2_mask implementation for CUDA 11

* fix KQ FP32 precision fpr parallel_blocks > 1

* llama-bench : add -fa,--flash-attn arg

* metal : add BS=1 kernel for flash attention (#6508)

* metal : add BS=1 kernel for flash attention (wip)

* metal : support more than 1 warps

* metal : opts

* metal : opt

* metal : switch to parallel reduce

* metal : reduce registers

* metal : simplify

* metal : initial FA vec kernel

* metal : use F32 attention accumulators

* batched-bench : add fattn arg

* llama : simplify llama_build_kv_store

ggml-ci

* llama : adapt build_olmo to changes

* ggml : fix arm fp16 store on windows

* metal : clean-up

* metal : clean-up kernel code

* metal : minor

* tests : remove benchmarks

ggml-ci

* ggml : fix avx512 const correctness

ggml-ci

* ggml : fix soft_max with bias on CPU

ggml-ci

* common : print --flash-attn in help

* ggml : fix num dimensions in ggml_flash_attn_ext

* llama : force disable flash attention for incompatible models

* ggml : ggml_soft_max support F16/F32 mask/pos

ggml-ci

* cuda : uint -> uint32_t

* cuda : "constexpr dim3" -> "const dim3"

ggml-ci

* cuda : try to fix __hgt2_mask

ggml-ci

* ggml : add TODO's for F16/F32 mask/pos support in other backends

* llama : replace bool need_kq_pos with use_alibi

* llama : prep ALiBi support for BERT models

ggml-ci

* llama : fix n_batch requirements

ggml-ci

* cont

* server : add help for --flash-attn arg

* llama : disable FA for AMD

* tests : remove TMP_ATTN_BENCH

ggml-ci

* llama : support save/load state with FA enabled

ggml-ci

* ci : add CUDA save-load-state tests

ggml-ci

* llama : llama_kv_cache_clear zeroes data + fix save-load seq

ggml-ci

* llama : fix copy-paste errors, add TODO

* llama : disallow incompatible states

* llama : update llama_state_get_size after v_trans field

* metal : remove tmp log

* llama : add static reminder for llama_state_get_size

* metal : fix max nsg

ggml-ci

* ci : fix arg order

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
slaren
0d56246f4b
ggml : group all experts in a single ggml_mul_mat_id (#6505)
* ggml : group all experts in a single ggml_mul_mat_id
cuda : improve mmid row copy

* cuda : fix bin bcast with non-cont src0

* test-backend-ops : only run all mul mat tests for base types

* llama : disable moe offloading with SYCL

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-18 15:18:48 +02:00
Shijie
f4dea7da18
llama : add qwen2moe (#6074)
* support qwen2moe

* fix-review

* metal : support unary ops for nelements % 4 != 0

* metal : require contiguousness for float4 unary kernels

* metal : require contiguousness for float4 unary kernels (cont)

* fix-review

* names : for brevity "SHARED_EXP" -> "SHEXP"

* llama : reuse build_moe_ffn()

* llama : add model type name

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-16 18:40:48 +03:00
slaren
fbbc030ba9
metal : unify mul_mv_id kernels (#6556) 2024-04-12 18:13:20 +02:00
slaren
08a0c02060
ggml : mul_mat_id use the same tensor for all the experts (#6387)
* ggml : update mul_mat_id to use the same tensor for all the experts

* update cuda

* minor

* update metal

* update test-backend-ops

* fix cuda

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update convert.py

* update convert-hf-to-gguf.py

* update convert.py for mixtral hf models

* Update convert-hf-to-gguf.py

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* cuda : support non-pow-2 number of experts

* allow quantize to work for split and merged experts models in the same way

* cleanup + disable mmap automatically with split tensors models

* update imatrix

* test-backend-ops : test qwen argsort

* update grok model loading

* llama : add merged experts tensors to the grok tensor map

* minor

* gguf : bump version

* fix quantizing of merged experts

* convert-hf-to-gguf.py : update grok (untested)

* make linter happy

* cuda/argsort : use shared memory instead of pool memory

* convert : fix grok tensor names

* metal : add support for non-pow-2 argsort

* llama : more loader cleanup, better error checking

* cuda : fix warning

* llama : still use mmap for loading old models, but copy the data to a host buffer

* add review note

* llama : remove ffn tensor counting + add sanity check

ggml-ci

* convert : fix handling of n_experts == None

ggml-ci

* imatrix : fix ncall counters

* llama : produce error if imatrix size does not match

* quantize : terminate on errors + trace logs

ggml-ci

* metal : pad shared memory to 16 bytes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03 16:07:05 +03:00
Kawrakow
55c1b2a3bb
IQ1_M: 1.75 bpw quantization (#6302)
* iq1_m: basics

* iq1_m: basics-2

* iq1_m: CUDA dequantize works

Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B.

* iq1_m: separate shifts for each group of 8 in a block

We get
PPL(LLaMA-v2-7B ) = 9.2810
PPL(LLaMA-v2-13B) = 6.8105

Not bad, but slightly higher than
  sqrt(PPL(IQ1_S) * PPL(IQ2_XXS))
which is the expected outcome given that IQ1_M is
halfway between IQ1_S and IQ2_XXS in terms of bpw.
From this, we would expect
 PPL = 9.14 for LLaMA-v2-7B
 PPL = 6.63 for LLaMA-v2-13B

* iq1_m: go to 3-bit scales

There is slight increase in PPL, but the 0.0625 bpw reduction
in size is totally worth it.

We now have
PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw
PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw
PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw

* iq1_m: scalar dot product

* iq1_m: AVX2 dot product

* iq1_m: very slightly faster AVX2 dot product

* iq1_m: ARM_NEON dot product

Works, but very slow (10.5 t/s)

* iq1_m: Metal - dequantize works, dot product does not

* iq1_m: Metal now works

About the same performance as iq1_s.

* iq1_m: minor

* iq1_m: checking pure iq1_m quantization

It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight
with Q4_K.

* iiq1_m: slightly faster ARM_NEON dot product

10.5 t/s -> 11.65 t/s

* iq1_m: faster ARM_NEON dot product

11.65 t/s -> 14.9 t/s

* iq1_m: another minor ARM_NEON dot product improvement

14.9 -> 15.0 t/s

* iq1_m: small PPL improvement via super-block scale adjustment

After quantizing block scales redo the super-block scale fit.

PPL(LLaMA-v2-7B ) = 9.3346
PPL(LLaMA-v2-13B) = 6.8419
PPL(LLaMA-v2-70B) = 4.8294
PPL(Mistral-7B  ) = 8.1624

* iq1_m: adapt to CUDA refactoring

* iq1_m: remove unused variable

We have progressed to warnings being errors.

* iq1_m: add to backend-ops tests

* iq1_m: fix Windows ARM

* iq1_m: use common definition of iq1m_scale_t

* cuda: assert -> NO_DEVICE_CODE

* iq1_M: PR comments

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 15:21:27 +01:00
Georgi Gerganov
95d576b48e
metal : pad n_ctx by 32 (#6177)
* metal : require ne00 >= 128 for mat-mat kernels

ggml-ci

* llama : pad n_ctx by 32

ggml-ci
2024-03-22 09:36:03 +02:00
slaren
d8fd0ccf6a
test-backend-ops : skip CPU backend by default (#6028) 2024-03-13 15:58:30 +02:00
Georgi Gerganov
5b09797321
ggml : remove old quantization functions (#5942)
* ggml : remove old quantization functions

ggml-ci

* ggml : simplify ggml_quantize_chunk

ggml-ci

* ggml : restrict correctness

ggml-ci

* ggml : remove hist data from the quantization API

ggml-ci

* tests : remove hist usage in test-backend-ops

ggml-ci

* vulkan : remove hist and fix typo
2024-03-09 15:53:59 +02:00
leejet
7d43c585dc
add some new ops, fix some operators and add batch operations to certain operators. (ggml/747)
* cuda: fix group_norm

* cuda: add batch inference support for ggml_pad/ggml_upscale

* add ggml_arrange

* add ggml_timestep_embedding

* update ggml_arange/ggml_timestep_embedding tests

* cuda: fix im2col

* add ggml_arange/ggml_timestep_embbeding support for metal backend

* fix some bugs

* fix some bugs

* Update ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-cuda.cu

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.metal

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* modify according to the review comments

* ggml : fix compile warnings + code style

* ggml : normalize compute_forward calls + fix seg fault in debug

* minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-03-04 10:39:10 +02:00