mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-30 13:24:35 +00:00
de35b47908
55 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
goerch
|
233fc1c69f
|
Minor improvements in GPT2 tokenizer (#3567)
* Fixing minor bugs in bpe_gpt2_preprocess * Don't add bos token in test |
||
Georgi Gerganov
|
f93af02488
|
sync : ggml (conv 1d + 2d updates, UB fixes) (#3468)
* sync : ggml (conv 1d + 2d updates) ggml-ci * ggml : fix UB in q5_0 and q5_1 quantize code ggml.c:1033:39: runtime error: left shift of 1 by 31 places cannot be represented in type 'int' SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior ggml.c:1081:39: runtime error: left shift of 1 by 31 places cannot be represented in type 'int' SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior ggml-ci * tests : fix UB in test-quantize-perf |
||
goerch
|
ff5a3f0c09
|
Work on the BPE tokenizer (#3252)
* Work on the BPE tokenizer Tokenizer tests work for Falcon-7B * Try to fix build problem * Fix debug assertion failure * Fix MSVC Unicode BOM problem * Cleanup and an improvement * Fix compiler warning * Cleanup * Test doesn't work over the full range of Unicodes * Update .gitignore and Makefile * Another Makefile rule * Testing Aquila * Moving byte decoding back to `token_to_piece` ... ... because everyone is using it. * Guarding some unusable code pathes * Streamlining code and adding some more assertions Important change: I'm classifying added tokens as control tokens now for BPE. * Adding a comment * Adding another assertion * Fixed vocabulary guarding assertions * Fix PR for recent change * Fix PR for recent change * Fix for compiler warning * Fix PR for recent change * Fix PR for recent change * Fix PR for recent change * Fix for compiler warning * Fixes for more compiler warnings * Remove unused code * Fix initialization of static maps * Add scores and token types back, adapt gptneox * Update llama.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update unicode.h Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update unicode.h Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Ported Starcoder and added some assertions * Fix coding style * Apply @jploski 's fix for missing tokens --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> |
||
Cebtenzzre
|
bc39553c90
|
build : enable more non-default compiler warnings (#3200) | ||
slaren
|
16bc66d947
|
llama.cpp : split llama_context_params into model and context params (#3301)
* llama.cpp : split llama_context_params into model and context params ggml-ci * fix metal build * fix freq_base/scale default to model value * llama-bench : keep the same model between tests when possible * move n_threads to llama_context_params, add n_threads_batch * fix mpi build * remove kv_size(), cuda scratch fixes * remove low-vram option * add n_threads_batch to system info, refactor to get_system_info() * add documentation about --threads-batch to the READMEs * llama-bench fix * main : fix rope freq/scale warning * llama.cpp : add llama_get_model common : add llama_tokenize from model * remove duplicated ctx/model functions ggml-ci * cuda : print total VRAM used |
||
xaedes
|
0e76a8992c
|
train : finetune LORA (#2632)
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train * remove unnecessary Adam(W) optimizer tensors. reduces optimizer memory overhead from 7*modelsize to 2*modelsize. additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t. bumps training checkpoint file version, but old checkpoints can still be read. new version with less tensors is saved. * add gradient clipping to AdamW * Fix reset of unused g->nodes and g->grads to NULL * implement gradient checkpointing for training reduces memory overhead from O(n_layer) to O(sqrt(n_layer)) as explained in readme of https://github.com/cybertronai/gradient-checkpointing * remove unused compute buffer 3 * add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep); * change AdamW decay parameter to work like the torch AdamW decay parameter It is now relative to Adam learning rate `alpha*sched`. Before that it was relative to `sched` only. `alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1] * change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT * change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW btw: the default weight decay parameter for torch.optim.AdamW is 0.01 * bug fixes for cross entropy loss ggml_cross_entropy_loss: sums where not correctly added in workload of each thread ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16 cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup. so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance. * fix test-grad0 for cross_entropy_loss the second argument to cross_entropy_loss must sum up to 1 for each row * fix test-grad0 for soft_max dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0) * improve finite differences of test-grad0 by using double instead of float * change cross_entropy_loss to output average over all rows this helps keeping the loss and gradients in a sane range * improve gradient checkpointing sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal. since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different: ``` given: n, u, v objective: minimize(a*u+b*v) where a*b=n, a>0, b>0 b=n/a minimize(a*u+v*n/a) diff(a*u+v*n/a, a) = u - (v*n/a)/a diff(a*u+v*n/a, a) == 0 u - (v*n/a)/a == 0 u == v*n/(a*a) u*a*a = v*n a*a = v*n/u a = sqrt(n*v/u) ``` this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage. * disable gradient checkpointing debug output * llama : fix rope usage in train-text-from-scratch after ChatGLM change * add more training parameters: --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. --adam-min-alpha N Adam minimum learning rate alpha, usually 0.1 * alpha * replace memcpy with reshape operation so that the graph is not cut at the input this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it * remove unused function argument from get_example_targets_batch * measure and print total training time * add optimization callback to ggml_opt_resume_g this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)). can be used for dynamic learning schedule and setting input data for batches before each iteration * use optimization callback in training allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration * add minimum number of tensor dimensions to apply weight decay (default 2) this allows to not apply weight decay to bias parameters * rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup * fix increase of model.train_samples and model.train_tokens now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations * change sampling parameters for prediction after training to defaults of common.h and clarify what is context for prediction and what are generated tokens * tighten abs error bounds for cross_entropy_loss in test-grad0 * add conditional compilation of using F16 exp in flash attention uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention * tighten abs error bounds for flash_attn in test-grad0 * tighten abs error bounds for sqrt in test-grad0 * remove out-commented vectorized code of opt_adam the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead * ggml : update ggml_rms_norm_back with configurable eps * llama training : fix ggml_rms_norm_back calls to pass configurable eps * remove trailing whitespace * add train function using automatic gradient checkpointing backward pass and allocator * in train function replace add_inplace by regular add because using add_inplace seems to result in different gradients * don't use allocate hash_map on context because the context has no_alloc=True when using memory allocator resulting in NULL data pointers * correctly clone reshape and permute operations by also cloning tensor->nb values * fix variable name and add missing type cast * terminate recursive tensor cloning when reaching tensor without src tensors * correctly clone view tensors by setting data pointers without this the checkpointing would only work when being used together with memory allocator * fix variable names * swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn` * add input tensors as checkpoints so that recursive tensor cloning of gradient checkpointing terminates on input tensors * fix variable name and add missing boolean negation * make sure some tensors are not reallocated by inserting new temporary nodes depending on them: output and parameter gradient tensors need to be available at the end of the graph execution parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration checkpoint tensors are allocated all together to reduce memory allocator fragmentation afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs * fix ASSERT to work with zero layers * add training options whether to use allocator and/or unified training function * integrate unified training function which may use memory allocator the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing * format name of cloned tensors with " (clone)" suffix * set names for tensors in unified train function for easier debugging * allocate graph on context using ggml_new_graph * remove handwritten training functions * remove unused training parameters "use_scratch" and "use_unified" * remove trailing whitespace * remove unused train params: mem_compute1_gb & mem_compute2_gb mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented) * remove unused forward_batch function * add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly * only use ggml_allocr_alloc when tensor has NULL data and is no view * fix test when to create temporary backward graph temporary backward graph is only necessary when using checkpointing * fix memory "leak" in optimizers each iteration a new cplan with new memory for work data was allocated. now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data. * reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory. the computation results are the same * add API functions to access llama model tensors * add stub example for finetuning, based on train-text-from-scratch * move and remove code * add API functions to access remaining model parameters: mult, head and rot * first draft for LORA finetune training * remove const model and layer arguments in API functions for accessing model tensors * bug fixes to make finetune compile automatic allocator does not work yet * add debug prints for training memory improvements * fix names of lora tensors * avoid stack overflow resulting from big ggml_cgraph replace stack allocation and ggml_build_forward by ggml_new_graph in combination with ggml_build_forward_expand * replace llama API functions to get model tensors by one function to get model tensor by name LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name); * remove unused call to not existing llama_get_layer_from_model * implement ggml_compute_forward_out_prod_q_f32 * remove trailing whitespace * add lora finetune support on quantized base model tensors * add ggml_add_cast API function this function works like ggml_add, but accepts a data type for the resulting tensor. only supported for quantized src0 input. * use ggml_add_cast in finetuning lora-applied weights will now have data type F32, which improves gradients when finetuning quantized base models * bug fix: actually use result type passed to ggml_add_cast * make sure base model tensors data cannot be used in viewable operations memory allocator would try to make lora application inplace on base model tensors. since those are memory mapped this will result in memory access violations * fix bug in ggml_out_prod which resulted in wrong n_dims of result tensors * avoid keeping in memory ALL of the gradients The problem here stems from ggml_graph_reset. This function is called in the optimization function, before each graph computation, to reset the gradients to zero. This required a unique memory slot for each gradient: allocating memory from a previosly freed memory location might lead to non-zero input gradients. During ggml_compute_backward the gradients are build stepwise by adding or substracting new values, starting from a OP_NONE tensor which needs to contain zero-values. This requires the graph reset. To avoid this I now remember in ggml_build_backward_expand the original OP_NONE gradient tensors in a hash table, which is passed to ggml_compute_backward. There instead of using add (or sub or similar) I test whether the existing gradient to be changed is a zero-valued-tensor by looking up its existence in the hash table. When it is such a zero-tensor it will not be modified, but replaced by the value to be added, otherwise the regular add (not inplace, allocator will take care of this) will be used. This way none of those zero-tensor values will be necessary in the final backward graph and more importantly they won't need a unique memory slot, just to make them zero. * remove trailing whitespace * remove debug prints and function to compute tensor data hash * improve optimization iteration prints * adjust maximal values to support finetuning 3B models * change default finetune params lora_r and lora_alpha to match the n_rank parameters of 4 * bug fix: make sure finetune input gradient is allocated at begin and kept until end * remove unnecessary src tensor from ggml_get_rows_back we don't need data of src[2] for computation, only to setup the correct output shape. remove dependency on src[2], so that allocator can work more freely. the computational graph is still completely determined, because the output shape is naturally included. this is similar to how ggml_reshape does it. * remove unnecessary src tensor from ggml_repeat & ggml_repeat_back we don't need data of src[1] for computation, only to setup the correct output shape. remove dependency on src[1], so that allocator can work more freely. the computational graph is still completely determined, because the output shape is naturally included * resolve todo allocator will only make it inplace when they are of the same type * mixing multiple LORA adapters is now possible pass more than one '--lora FNAME' argument to apply more than one LORA. use '--lora-scaled FNAME S' when you want to specify a user-defined scale for an adapter. * add option to save finetune output every N iterations * also save latest finetune output with ITERATION="LATEST" and print where files are saved saving with LATEST makes it easier to resume training from the latest checkpoint the string "LATEST" can be configured with command line option "--fn-latest STR" * update checkpoint train stats before saving via "--save-every" * add command line option `--rank-wo N` for rank of wo tensor * update finetune README * fix dump_non_result_info_yaml to output multiple lora adapters * bug fix: replace GGML_TYPE_SIZE[t] by ggml_type_size(t) * replace llama_n_mult by llama_n_ff * finetune bug fixes to compile with merged in code from master * remove prediction related code to reduce duplicated code with main use main instead * reduce large memory overhead in train-text-from-scratch all gradients had to be pinned so that graph_reset works correctly. this is no longer necessary with the changes to ggml_compute_backward introduced in this PR. * add comment explaining why finetune checkpoints are allocated in one block * make default value of float member a float literal * handle rms_norm and rope parameters the same as in train-text-from-scratch * remove unused code * remove vocab related code as it is unnecessary * add LLM_KV_TRAINING_TYPE to train-text-from-scratch checkpoints so that they can be differentiated from lora finetune checkpoints * add gguf constants and load/save functions from train-text-from-scratch * add load & save lora finetune checkpoints via gguf * add python script to convert old finetune checkpoint files to gguf * remove old checkpoint save & load code * remove code to print data checksums which was used to verify correctness of new gguf code * omit tokenization when training is disabled, only save llama lora adapter training can be disabled by passing '-n 0' to finetune * remove trailing whitespace * update README.md * implement ggml_compute_forward_repeat_f16 * avoid stack overflow of large cgraphs in test-grad0 * add ggml API functions ggml_unravel_index, ggml_get_i32_nd and its analogs for set and for f32 ggml_get_i32_1d, ggml_set_i32_1d, ggml_get_f32_1d, ggml_set_f32_1d now support non-contiguous tensors. in case of non-contiguous tensor, the 1d index is unraveled into a multi index using ggml_unravel_index to be passed to '_nd' function equivalent. this fixes a bug in test-grad0 which happens due to ggml_build_backward not building purely contiguous tensors anymore * increase test-grad0 context mem size to accommodate for bigger cgraph * add sanity check to ggml_compute_backward, asserting the correct shape of gradients * fix ggml_acc_or_set to return tensor of correct shape * remove unused 'inplace' argument from ggml_compute_backward function inplace operations to add gradients are no longer created by ggml_compute_backward use allocator to automatically make inplace operations * add missing argument 'int i0' to ggml_get_i32_nd & ggml_set_i32_nd header declarations * fix error message in ggml_allocr_alloc to display actual max_avail * fix check_gradient ggml_build_backward_expand was previously replaced by ggml_build_backward, but the assignment of forward graph to backward graph missing * use tensor->view_src instead of ggml_is_view and get_view_source * move gradient checkpointing code into ggml, new API function: // build gradient checkpointing backward graph gb for gf using provided checkpoints // gb_tmp will contain original backward graph with rewritten backward process nodes, // but without the second forward pass nodes. GGML_API void ggml_build_backward_gradient_checkpointing( struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, struct ggml_cgraph * gb_tmp, struct ggml_tensor * * checkpoints, int n_checkpoints); * replace custom data getters and setters by ggml functions * train-text-from-scratch can train (full finetune) gguf models just pass the gguf model via `--checkpoint-in FN`. after this, to continue training, pass the generated checkpoint instead of the original gguf model. tested with smaller models, bigger models may exceed available memory. use (LORA) finetune for those. * remove trailing whitespace * add option to save train-text-from-scratch output every N iterations * update README.md * fix warnings * fix warnings * remove finetune option to disable allocator the allocator should always be used. by making sure that it is always used it gets easier to implement automatic memory requirements computation * add tensor checkpoints only when gradient checkpointing is enabled * initialize opt ggml context if none was provided * add ggml-alloc API function 'ggml_allocr_max_size' to get max size of alloc GGML_API size_t ggml_allocr_max_size(struct ggml_allocr * alloc); * finetune: automatically allocate all memory and changes to command line options remove '--n_examples N' parameter, as it no longer makes sense to call optimization process multiple times in a loop. add '--only_write_lora' command line option: will skip tokenization and training, to only write a llama.cpp comptabile LORA adapter. remove memory buffer related command line options. improve iteration console output. * add finetune to Makefile * update README.md * print time per iteration and estimate remaining time * increase measured alloc size by tensor_alignment ggml_allocr_reset will reduce the given size by up to tensor_alignment-1 * fix README.md * add some more allocator debug prints * bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue * revert last commit "bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue" "alloc was freeing an externally allocated tensor, because it calculated the end of allocator memory as alloc->data + alloc->max_size instead of alloc->data + alloc->size." This is intentional to reduce the risk of freeing external tensors when measuring. Unless max_size is not properly calculated, I don't see why this is an issue. * remove unnecessary "0x" before "%p" output * move measurement memory segment to upper region of the address space * update README.md * fix printf format warnings * add missing gguf_free in load_checkpoint_lora_file * load default rms_norm and rope parameters from base model * add gradient accumulation specify number accumulation steps with '--grad-acc N'. this will simulate a bigger batch size of grad_acc*batch. * fix tracking of train_samples and train_tokens * build : fix compile warnings * ggml : fix L-BFGS linesearch loop * improve finetune time measurement fix printf warnings on system where int64_t is (long int). change time datatypes to double because values get big with long training times. exclude file saving from time measurement. converge faster to actual time per iteration by removing very small first duration before first iteration was performed. fix bug in output of total training time, the reported value was 1000 times to small. * specify default lora rank with '--lora-r N' '--lora-r N' will specify default rank for all tensors '--rank-wq N', etc. will override this default rank for specific tensor types. * fix gradient accumulation bug where the same batch was used for each microstep * fix gradient accumulation bug where the same batch was used for each microstep * support grouped-query-attention in ggml_flash_attn and ggml_flash_attn_back k and v can now be repeated in q along ne[2] in forward pass just use modulo to compute k and v indices, like ik2 = iq2 % nek2. in backard pass this won't work as easy, because multiple threads will compete to accumulate to the same k->grad[:,ik1,ik2,ik3] and v->grad[:,iv1,iv2,iv3]. so we change the parallelization over q rows to be over k rows. this ensures non-overlapping (ik2,ik3) across threads. in each thread we then iterate over the number of repetitions of k/v in q to compute iq2 as iq2 = ik2 + irep*nek2. since ne2 is not the same for q,k and v we also change how the gradients are concatenated into the result tensor. additionally the offsets of gradq, gradk and gradv in the result tensor are now memory aligned. we also simplify the compute_backward part of flash_attn to use ggml_reshape instead of switching over the number of dimensions. this needs a small change to ggml_reshape, removing the assertion of second argument to be contiguous. since only the shape (ne) of the second reshape argument is of relevance, its memory layout (nb) is irrelevant -> it can very well be non-contiguous. change test-grad0 to also test for repeated k/v in q. this changes the rng and now results in small gradient differences in softmax. these solely come from using f16 exp table lookup in forward softmax: when temporarily changing softmax to use actual exp function, the reported gradient differences go away. gradient differences coming solely from f16 table lookup are acceptable. added a note to explain this. * add llama API functions to get grouped-query-attention n_head parameter 'n_head_kv'. * fix finetune to support grouped-query-attention (using flash-attention) note: ggml changes to ggml_out_prod are necessary to support grouped-query-attention without flash-attention. * support broadcastable a in out_prod(a, b) and backward pass of broadcasting mul_mat(a, b) * test broadcasting mul_mat backward pass * decouple random number generator of each operation test when changing one test the rng of others tests is not influenced anymore * add comment briefly describing what ggml_repeat_back does * simplify broadcasting mul_mat backward using ggml_repeat_back * add cgraph evaluation order member and corresponding enum type this controls in which order ggml_build_forward visits source nodes. by default the nodes are visited left to right, i.e. src[0] first. in some cases it is beneficial for ggml-alloc to visit in a different order. two possible orders are supported: left-to-right (src[0] first) and right-to-left (src[0] last). * measure max compute size for each cgraph eval order and use best order this can bring huge memory savings: e.g. codellama-34b with n_ctx=64, n_batch=1 goes from 92927.8mb down to 4627.6 MB * remove unused command line options * add sample start patterns and options to force new or by default resume last shuffling * update shuffle rng state on reshuffle * exclude known zero values from computations in flash_attn_f32 & flash_attn_back_f32 * remove probably unnecessary exception type flags from stringstream * pass correct max number of tokens to llama_tokenize * account for possible leading whitespace that will be added by tokenizer e.g. '\t' will be tokenized by llama spm tokenizer to [29871, 12] * use unrolled vec_mad in out_prod y is vec_mad result vec. x is vec_mad input vec. v is vec_mad input scalar. ggml_vec_mad_f32_unroll will internally loop over x and v with same y. GGML_VEC_MAD_UNROLL is by default defined to 32. This value is empirical optimized using performance test runs of out-prod in openllama-3b finetune with 256 context length and batch size 1. It gives 23% performance boost for out_prod. Full measurements of out-prod runtime in ms: unroll_xv unroll_yv 1 67014.643 87826.469 2 77117.552 89077.656 4 72091.311 109121.657 8 61077.543 88678.334 16 56914.67 79514.947 24 59024.595 84350.254 28 55952.446 83368.73 32 51476.658 85177.745 36 55973.792 84659.92 40 55139.616 93844.738 48 60736.392 93330.267 64 99856.878 116994.99 Second column is when unrollying yv instead of xv * set lora_alpha to value of lora_r if it is not set via command line otherwise only changing lora_r will change scaling of lora adapter used in prediction * reshuffle original sample order instead of the previous shuffled order otherwise resumed reshuffle will not result in same sample order * block tiling for out-prod inspired by mul-mat block sizes are empirically optimized roughly doubles the flops of out-prod * exclude some more known zero values from computations in flash_attn_f32 & flash_attn_back_f32 * add static keywords * remove outcommented old code * update train-text-from-scratch with tokenization, sample selection and shuffling from finetune * remove lbfgs related train parameters * move common train functions into common/train.[h|cpp] * move train state into struct train_state * move train data saving code into callback to unify code of opt_callback train_params are still different in finetune and train-text-from-scratch, so it can't yet be moved to train.h|cpp * move common train params into common/train * move common opt_callback into common/train * fix consume_common_train_arg * save and load head_count_kv in lora checkpoints * increase train_samples by used_samples instead of number of batches on batch can contain more than one sample when option "fill_with_next_samples" is used * fix usage of llama_tokenize * remove static from process_escape since we need it exposed in header * fix code formating of long function declarations * fix condition in load_train_state_gguf * use die("msg") instead of replace GGML_ASSERT(!"msg") or throw std::runtime_error("msg") * fix saving and loading of training type * remove terminating '\0' from tokenization (llama_tokenize is now passed the string length instead of relying on terminating '\0') * fix compile warnings * fix compile warnings * use new/delete for train_state instead of malloc/free using malloc may result in seg faults when trying to assign string fields * assert that sample_count > 0, avoiding division by zero * fix frand to return value in interval [0,1) * add train option "--sample-random-offsets" Use samples beginning at random offsets. The offset is only applied to the first sample in each batch context window. Together with "--fill-with-next-samples" this may help for training endless text generation. For example given a dataset containing samples "abcd", "ABCD", "0123". With context size of 8 and options "--fill-with-next-samples", "--no-separate-with-eos", "--no-separate-with-bos", the context windows of batches could only be filled with "abcdABCD", "ABCDabcd", "0123abcd", etc. With "--sample-random-offsets" it can also be filled with "23abcdAB", "bcd0123A", etc. * deduplicate code into function * remove n_rot hparam, as it must always be hparam.n_embd_head() * align code * assert correct base model tensor shapes * move some params from lora hparams into model hparams and load model params from gguf this equalizes the model definition in finetune and text-from-scratch and removes the need for additional llama api functions to get model parameters * remove now unnecessary llama API functions to get model params that where added by this PR * train-text-from-scratch: automatically allocate model tensors, remove option '--mem-model N' * train-text-from-scratch: automatically allocate opt context * train-text-from-scratch: automatically allocate input tensors * train-text-from-scratch: automatically allocate compute memory * remove unused options and equalize train-text-from-scratch with finetune * initialize opt->loss_after with zero * add export-lora program * remove trailing whitespace * add export-lora build in Makefile * remove unused struct tensor_info from export-lora * add export-lora build dependency to llama because it depends on common, which depends on llama * update finetune README.md * cancel optimization when specified number of epochs is completed * improve handling of export-lora arguments print errors and warnings when files could not be read or created * Fix export-lora.cpp "not enough space in the context's memory pool" (#1) * Fix export-lora.cpp "not enough space in the context's memory pool" Without this patch, export-lora would sometimes error with "not enough space in the context's memory pool (needed 656784, available 656800)". * increase required context size by 5*GGML_MEM_ALIGN instead of plain 16 --------- Co-authored-by: xaedes <xaedes@gmail.com> * improve handling of not yet supported tensor types --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: meatbag-18a <145869052+meatbag-18a@users.noreply.github.com> |
||
Georgi Gerganov
|
ec893798b7
|
llama : custom attention mask + parallel decoding + no context swaps (#3228)
* tests : verify that RoPE is "additive" * llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask) * ggml : ggml_rope now takes a vector with positions instead of n_past * metal : add rope_f16 kernel + optimize cpy kernels * llama : unified KV cache + batch inference API * llama : add new llama_decode() API that works with llama_batch * llama : add cell_max heuristic for more efficient kv_cache * llama : extend llama_kv_cache API * llama : more robust cell_max heuristic + wip shift * metal : disable concurrency optimization * llama : add llama_kv_cache_shift_seq + no more context swaps * llama : apply K-cache roping for Falcon and Baichuan * speculative : fix KV cache management * parallel : example for serving multiple users in parallel * parallel : disable hot-plug to avoid cache fragmentation * fixes : speculative KV cache + llama worst-case graph * llama : extend batch API to select which logits to output * llama : fix worst case graph build * ggml-cuda : update rope implementation for parallel decoding (#3254) * ggml-cuda : update rope implementation for parallel decoding * better solution for p0 computation * fix rope * simpler rope implementation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * make : add parallel to build + fix static functions in llama.cpp * simple : fix token counting * parallel : various improvements * llama : fix cell_max logic + rename functions * parallel : try smaller batches when the KV cache is fragmented * parallel : fix sequence termination criteria * llama : silence errors KV cache errors * parallel : remove new line from prompt * parallel : process system prompt once + configurable paramters + llama API * parallel : remove question with short answers * parallel : count cache misses * parallel : print misses on each request * parallel : minor * llama : fix n_kv to never become 0 * parallel : rename hot-plug to continuous-batching * llama : improve llama_batch API + simplify parallel example * simple : add parallel decoding support * simple : improve comments + free batch * ggml-cuda : add rope f16, restore performance with parallel decoding (#3272) * ggml-cuda : add rope f16, restore performance * offload KQ_mask with all models * fix rope shift --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : disable MPI for now ggml-ci * train : make KQ_pos memory buffer permanent via dummy scale op * ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275) ggml-ci * parallel : fix bug (extra BOS) + smaller token_prev array * parallel : fix cases where the input prompts can overflow the batch * parallel : add disabled experimental batch chunking in powers of two * llama : llama.h formatting + comments * simple : add README.md * llama : fix kv cache heuristic when context is less than 32 * parallel : fix crash when `-n -1` * llama : simplify returns if/else branches * metal : use mm kernels for batch size > 2 * examples : utilize new llama_get_logits_ith() * examples : add example for batched decoding * examples : do not eval prompt 2 times (close #3348) * server : clear the KV cache beyond n_past before llama_decode * server : avoid context swaps by shifting the KV cache --------- Co-authored-by: slaren <slarengh@gmail.com> |
||
goerch
|
b08e75baea
|
Fixing the last deviations from sentencepiece indicated by test-tokenizer-1 (#3170)
* Fix für #2721 * Reenable tokenizer test for LLaMa * Add `console.cpp` dependency * Fix dependency to `common` * Fixing wrong fix. * Make console usage platform specific Work on compiler warnings. * Adapting makefile * Remove trailing whitespace * Adapting the other parts of the makefile * Fix typo. * Fixing the last deviations from sentencepiece indicated by test-tokenizer-1 * Simplify logic * Add missing change... * Fix ugly compiler warning * llama_tokenize should accept strings containing NUL now * Adding huichen's test case |
||
Cebtenzzre
|
3aefaab9e5
|
check C++ code with -Wmissing-declarations (#3184) | ||
goerch
|
71ca2fad7d
|
whisper : tokenizer fix + re-enable tokenizer test for LLaMa (#3096)
* Fix für #2721 * Reenable tokenizer test for LLaMa * Add `console.cpp` dependency * Fix dependency to `common` * Fixing wrong fix. * Make console usage platform specific Work on compiler warnings. * Adapting makefile * Remove trailing whitespace * Adapting the other parts of the makefile * Fix typo. |
||
Cebtenzzre
|
00d62adb79
|
fix some warnings from gcc and clang-tidy (#3038)
Co-authored-by: xaedes <xaedes@gmail.com> |
||
Cebtenzzre
|
849408957c
|
tests : add a C compliance test (#2848)
* tests : add a C compliance test * make : build C compliance test by default * make : fix clean and make sure C test fails on clang * make : move -Werror=implicit-int to CFLAGS |
||
xaedes
|
44c117f41e
|
train : mem usage and other improvements (#2439)
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train * remove unnecessary Adam(W) optimizer tensors. reduces optimizer memory overhead from 7*modelsize to 2*modelsize. additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t. bumps training checkpoint file version, but old checkpoints can still be read. new version with less tensors is saved. * add gradient clipping to AdamW * Fix reset of unused g->nodes and g->grads to NULL * implement gradient checkpointing for training reduces memory overhead from O(n_layer) to O(sqrt(n_layer)) as explained in readme of https://github.com/cybertronai/gradient-checkpointing * remove unused compute buffer 3 * add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep); * change AdamW decay parameter to work like the torch AdamW decay parameter It is now relative to Adam learning rate `alpha*sched`. Before that it was relative to `sched` only. `alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1] * change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT * change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW btw: the default weight decay parameter for torch.optim.AdamW is 0.01 * bug fixes for cross entropy loss ggml_cross_entropy_loss: sums where not correctly added in workload of each thread ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16 cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup. so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance. * fix test-grad0 for cross_entropy_loss the second argument to cross_entropy_loss must sum up to 1 for each row * fix test-grad0 for soft_max dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0) * improve finite differences of test-grad0 by using double instead of float * change cross_entropy_loss to output average over all rows this helps keeping the loss and gradients in a sane range * improve gradient checkpointing sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal. since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different: ``` given: n, u, v objective: minimize(a*u+b*v) where a*b=n, a>0, b>0 b=n/a minimize(a*u+v*n/a) diff(a*u+v*n/a, a) = u - (v*n/a)/a diff(a*u+v*n/a, a) == 0 u - (v*n/a)/a == 0 u == v*n/(a*a) u*a*a = v*n a*a = v*n/u a = sqrt(n*v/u) ``` this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage. * disable gradient checkpointing debug output * llama : fix rope usage in train-text-from-scratch after ChatGLM change * add more training parameters: --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. --adam-min-alpha N Adam minimum learning rate alpha, usually 0.1 * alpha * replace memcpy with reshape operation so that the graph is not cut at the input this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it * remove unused function argument from get_example_targets_batch * measure and print total training time * add optimization callback to ggml_opt_resume_g this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)). can be used for dynamic learning schedule and setting input data for batches before each iteration * use optimization callback in training allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration * add minimum number of tensor dimensions to apply weight decay (default 2) this allows to not apply weight decay to bias parameters * rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup * fix increase of model.train_samples and model.train_tokens now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations * change sampling parameters for prediction after training to defaults of common.h and clarify what is context for prediction and what are generated tokens * tighten abs error bounds for cross_entropy_loss in test-grad0 * add conditional compilation of using F16 exp in flash attention uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention * tighten abs error bounds for flash_attn in test-grad0 * tighten abs error bounds for sqrt in test-grad0 * remove out-commented vectorized code of opt_adam the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead * ggml : update ggml_rms_norm_back with configurable eps * llama training : fix ggml_rms_norm_back calls to pass configurable eps * remove trailing whitespace * add train function using automatic gradient checkpointing backward pass and allocator * in train function replace add_inplace by regular add because using add_inplace seems to result in different gradients * don't use allocate hash_map on context because the context has no_alloc=True when using memory allocator resulting in NULL data pointers * correctly clone reshape and permute operations by also cloning tensor->nb values * fix variable name and add missing type cast * terminate recursive tensor cloning when reaching tensor without src tensors * correctly clone view tensors by setting data pointers without this the checkpointing would only work when being used together with memory allocator * fix variable names * swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn` * add input tensors as checkpoints so that recursive tensor cloning of gradient checkpointing terminates on input tensors * fix variable name and add missing boolean negation * make sure some tensors are not reallocated by inserting new temporary nodes depending on them: output and parameter gradient tensors need to be available at the end of the graph execution parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration checkpoint tensors are allocated all together to reduce memory allocator fragmentation afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs * fix ASSERT to work with zero layers * add training options whether to use allocator and/or unified training function * integrate unified training function which may use memory allocator the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing * format name of cloned tensors with " (clone)" suffix * set names for tensors in unified train function for easier debugging * allocate graph on context using ggml_new_graph * remove handwritten training functions * remove unused training parameters "use_scratch" and "use_unified" * remove trailing whitespace * remove unused train params: mem_compute1_gb & mem_compute2_gb mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented) * remove unused forward_batch function * add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly * only use ggml_allocr_alloc when tensor has NULL data and is no view * fix test when to create temporary backward graph temporary backward graph is only necessary when using checkpointing * fix memory "leak" in optimizers each iteration a new cplan with new memory for work data was allocated. now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data. * reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory. the computation results are the same * add missing lctx argument to get_example_targets_batch * implement llama model file saving using gguf checkpoint loading and saving disabled, to be replaced by loading and saving via gguf * implement loading/saving of checkpointing files using GGUF * bug fixes * add checkpoint file version for future compatibility * update readme with gguf filenames * save & load opt->just_initialized value * add first draft for checkpoint conversion script * add gguf arch and ftype * save opt parameter counter as uint64 * add gguf key and tensor names for optimizer and training * add layer_norm_rms_eps to checkpoint convert script * use same GGUF_GET_KEY macro as in llama.cpp * use norm_rms_eps, and rope parameters and command line options to set them * fix memory corruption bug in gguf ctx->kv and ctx->infos was reallocated using not-aligned realloc, but freed with aligned free. to fix this a GGML_ALIGNED_REALLOC was added, but there is no posix_memalign_realloc function. so on non-windows and non-mingw32 platforms we fall back to aligned malloc, followed by copying and freeing the old data. * add gguf example cmake file * bug fixes in tokenize_file * bug fixes in load_llama_model_gguf * bug fix: init model when no checkpoint was loaded * bug fix in read_tensor_by_name * bug fix in load_opt_context_gguf * avoid printing lots of spaced on the unusual case that loss gets nan * set name of tensors with empty name from what was read from gguf * remove trailing whitespace * print data checksums before saving and after loading to verify correctness * bug fixes for convert-train-checkpoint-to-gguf * temporarily add code to write old checkpoint files used to verify that old checkpoint files are correctly converted to gguf * bug fixes for convert-train-checkpoint-to-gguf.py loading checkpoints with opt_version=0 * remove code used to verify correctness of checkpoint file conversion * remove trailing whitespace * remove prediction related code use main for prediction, it is better optimized * update train-text-from-scratch README.md * fix non-windows GGML_ALIGNED_REALLOC * add missing blank line at end of file * remove GGML_ALIGNED_REALLOC and use normal malloc/realloc/free for gguf ctx->kv & ctx->infos * train : fix compile warnings --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> |
||
Georgi Gerganov
|
edd4c14817
|
llama : more tokenizer fixes (#2810)
* tests : write a Python tokenizer test (wip) * llama : prefix input text for tokenization with whitespace * llama : distinguish pieces from decoded text + fix detokenization * common : add comments * examples : no longer manually add leading space when tokenizing * tests : use Python to generate tokenizer tests for C++ * tests : add option to tokenize text files ggml-ci * tests : add test-tokenizer-1.py * llama.cpp : fix LF token * hellaswag : move the concat space for clarity * tests : add falcon tests (py + cpp, currently do not pass Unicode) ggml-ci * common : temporary separate llama_detokenize calls for SPM and BPE --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com> |
||
klosax
|
2ba83c8685
|
Fix spm whitespaces (#2806)
* llama.cpp : fix spm whitespace escaping + clean up * main.cpp : spm - add whitespace in front of prompt * test-tokenizer-0.cpp : spm - add whitespace in front of prompt |
||
Georgi Gerganov
|
cf658adc83
|
llm : add Falcon support (#2717)
* llama : refactor GGUF constants into static maps * llama : check if model architecture is known * llama : refactor llama_model_load_internal() * gguf : add KV constant maps * llm : read arch-specific KVs * convert : add dummy scores + types * falcon : load tensor data (CPU only) * llama : fix loading progress bar * llama : add arch member to llama_model * falcon : CPU inference working * falcon : support non-40B models * falcon : minor * llama : minor updates ggml-ci * convert-falcon-hf-to-gguf.py : fix special token mapping * llama.cpp : llama default UNK token = id 0 * llama.cpp : fix bpe tokenizer * llama.cpp : fix the fix of bpe tokenizer * ggml : pass eps to ggml_norm * metal : implement RoPE (mode = 2) + avoid ggml_repeat * ggml : ggml_repeat always creates new tensor * falcon : copy-paste self-attention from LLaMA * metal : print extra compute pipeline info * falcon : minor changes (still chasing the Metal problem) * llama.cpp : fix linefeed token * metal : fix GELU kernel numerical stability by using precise::tanh * metal : temporary workaround for the concurrency optimization bug * falcon : add CUDA offloading (#2739) * llama : better model naming and size reporting * llama : prep new tokenizer support * llama : advanced BPE tokenizer based on ggllm.cpp imlpementation * llama : remove oboslete comment ggml-ci * common : remove obsolete BPE API + disable test-tokenizer-1 * llama : revert BPE special-case in llama_byte_to_token() * cuda : add TODOs for RoPE NeoX implementation * llama : default special tokens based on vocab type * perplexity : add log for start of tokenization --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> |
||
goerch
|
46ef5b5fcf
|
llama : fix whitespace escaping in tokenizer (#2724) | ||
Georgi Gerganov
|
6381d4e110
|
gguf : new file format with flexible meta data (beta) (#2398)
* gguf : first API pass
* gguf : read header + meta data
* gguf : read tensor info
* gguf : initial model loading - not tested
* gguf : add gguf_get_tensor_name()
* gguf : do not support passing existing ggml_context to gguf_init
* gguf : simplify gguf_get_val
* gguf : gguf.c is now part of ggml.c
* gguf : read / write sample models
* gguf : add comments
* refactor : reduce code duplication and better API (#2415)
* gguf : expose the gguf_type enum through the API for now
* gguf : add array support
* gguf.py : some code style changes
* convert.py : start a new simplified implementation by removing old stuff
* convert.py : remove GGML vocab + other obsolete stuff
* GGUF : write tensor (#2426)
* WIP: Write tensor
* GGUF : Support writing tensors in Python
* refactor : rm unused import and upd todos
* fix : fix errors upd writing example
* rm example.gguf
* gitignore *.gguf
* undo formatting
* gguf : add gguf_find_key (#2438)
* gguf.cpp : find key example
* ggml.h : add gguf_find_key
* ggml.c : add gguf_find_key
* gguf : fix writing tensors
* gguf : do not hardcode tensor names to read
* gguf : write sample tensors to read
* gguf : add tokenization constants
* quick and dirty conversion example
* gguf : fix writing gguf arrays
* gguf : write tensors one by one and code reuse
* gguf : fix writing gguf arrays
* gguf : write tensors one by one
* gguf : write tensors one by one
* gguf : write tokenizer data
* gguf : upd gguf conversion script
* Update convert-llama-h5-to-gguf.py
* gguf : handle already encoded string
* ggml.h : get array str and f32
* ggml.c : get arr str and f32
* gguf.py : support any type
* Update convert-llama-h5-to-gguf.py
* gguf : fix set is not subscriptable
* gguf : update convert-llama-h5-to-gguf.py
* constants.py : add layer norm eps
* gguf.py : add layer norm eps and merges
* ggml.h : increase GGML_MAX_NAME to 64
* ggml.c : add gguf_get_arr_n
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Makefile : add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* gguf : support custom alignment value
* gguf : fix typo in function call
* gguf : mmap tensor data example
* fix : update convert-llama-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* convert-gptneox-h5-to-gguf.py : Special tokens
* gptneox-main.cpp : special tokens
* Update gptneox-main.cpp
* constants.py : special tokens
* gguf.py : accumulate kv and tensor info data + special tokens
* convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens
* gguf : gguf counterpart of llama-util.h
* gguf-util.h : update note
* convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens
* convert-llama-h5-to-gguf.py : special tokens
* Delete gptneox-common.cpp
* Delete gptneox-common.h
* convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer
* gptneox-main.cpp : gpt2 bpe tokenizer
* gpt2 bpe tokenizer (handles merges and unicode)
* Makefile : remove gptneox-common
* gguf.py : bytesarray for gpt2bpe tokenizer
* cmpnct_gpt2bpe.hpp : comments
* gguf.py : use custom alignment if present
* gguf : minor stuff
* Update gptneox-main.cpp
* map tensor names
* convert-gptneox-h5-to-gguf.py : map tensor names
* convert-llama-h5-to-gguf.py : map tensor names
* gptneox-main.cpp : map tensor names
* gguf : start implementing libllama in GGUF (WIP)
* gguf : start implementing libllama in GGUF (WIP)
* rm binary commited by mistake
* upd .gitignore
* gguf : calculate n_mult
* gguf : inference with 7B model working (WIP)
* gguf : rm deprecated function
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : add gguf_get_kv_type
* gguf : add gguf_get_kv_type
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver
* gguf : rm references to old file formats
* gguf : shorter name for member variable
* gguf : rm redundant method
* gguf : get rid of n_mult, read n_ff from file
* Update gguf_tensor_map.py
* Update gptneox-main.cpp
* gguf : rm references to old file magics
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : quantization is working
* gguf : roper closing of file
* gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : no need to convert tensors twice
* convert-llama-h5-to-gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : simplify nbytes
* convert-llama-h5-to-gguf.py : simplify nbytes
* gptneox-main.cpp : n_layer --> n_block
* constants.py : n_layer --> n_block
* gguf.py : n_layer --> n_block
* convert-gptneox-h5-to-gguf.py : n_layer --> n_block
* convert-llama-h5-to-gguf.py : n_layer --> n_block
* gptneox-main.cpp : n_layer --> n_block
* Update gguf_tensor_map.py
* convert-gptneox-h5-to-gguf.py : load model in parts to save memory
* convert-llama-h5-to-gguf.py : load model in parts to save memory
* convert : write more metadata for LLaMA
* convert : rm quantization version
* convert-gptneox-h5-to-gguf.py : add file_type key
* gptneox-main.cpp : add file_type key
* fix conflicts
* gguf : add todos and comments
* convert-gptneox-h5-to-gguf.py : tensor name map changes
* Create gguf_namemap.py : tensor name map changes
* Delete gguf_tensor_map.py
* gptneox-main.cpp : tensor name map changes
* convert-llama-h5-to-gguf.py : fixes
* gguf.py : dont add empty strings
* simple : minor style changes
* gguf : use UNIX line ending
* Create convert-llama-7b-pth-to-gguf.py
* llama : sync gguf-llama.cpp with latest llama.cpp (#2608)
* llama : sync gguf-llama.cpp with latest llama.cpp
* minor : indentation + assert
* llama : refactor gguf_buffer and gguf_ctx_buffer
* llama : minor
* gitignore : add gptneox-main
* llama : tokenizer fixes (#2549)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* convert : update convert-new.py with tokenizer fixes (#2614)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* llama : sync gguf-llama with llama (#2613)
* llama : sync gguf-llama with llama
* tests : fix build + warnings (test-tokenizer-1 still fails)
* tests : fix wstring_convert
* convert : fix layer names
* llama : sync gguf-llama.cpp
* convert : update HF converter to new tokenizer voodoo magics
* llama : update tokenizer style
* convert-llama-h5-to-gguf.py : add token types
* constants.py : add token types
* gguf.py : add token types
* convert-llama-7b-pth-to-gguf.py : add token types
* gguf-llama.cpp : fix n_head_kv
* convert-llama-h5-to-gguf.py : add 70b gqa support
* gguf.py : add tensor data layout
* convert-llama-h5-to-gguf.py : add tensor data layout
* convert-llama-7b-pth-to-gguf.py : add tensor data layout
* gptneox-main.cpp : add tensor data layout
* convert-llama-h5-to-gguf.py : clarify the reverse permute
* llama : refactor model loading code (#2620)
* llama : style formatting + remove helper methods
* llama : fix quantization using gguf tool
* llama : simplify gguf_file_saver
* llama : fix method names
* llama : simplify write_header()
* llama : no need to pass full file loader to the file saver
just gguf_ctx
* llama : gguf_file_saver write I32
* llama : refactor tensor names (#2622)
* gguf: update tensor names searched in quantization
* gguf : define tensor names as constants
* gguf : initial write API (not tested yet)
* gguf : write to file API (not tested)
* gguf : initial write API ready + example
* gguf : fix header write
* gguf : fixes + simplify example + add ggml_nbytes_pad()
* gguf : minor
* llama : replace gguf_file_saver with new gguf write API
* gguf : streaming support when writing files
* gguf : remove oboslete write methods
* gguf : remove obosolete gguf_get_arr_xxx API
* llama : simplify gguf_file_loader
* llama : move hparams and vocab from gguf_file_loader to llama_model_loader
* llama : merge gguf-util.h in llama.cpp
* llama : reorder definitions in .cpp to match .h
* llama : minor simplifications
* llama : refactor llama_model_loader (WIP)
wip : remove ggml_ctx from llama_model_loader
wip : merge gguf_file_loader in llama_model_loader
* llama : fix shape prints
* llama : fix Windows build + fix norm_rms_eps key
* llama : throw error on missing KV paris in model meta data
* llama : improve printing + log meta data
* llama : switch print order of meta data
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
* gguf : deduplicate (#2629)
* gguf : better type names
* dedup : CPU + Metal is working
* ggml : fix warnings about unused results
* llama.cpp : fix line feed and compiler warning
* llama : fix strncpy warning + note token_to_str does not write null
* llama : restore the original load/save session implementation
Will migrate this to GGUF in the future
* convert-llama-h5-to-gguf.py : support alt ctx param name
* ggml : assert when using ggml_mul with non-F32 src1
* examples : dedup simple
---------
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
* gguf.py : merge all files in gguf.py
* convert-new.py : pick #2427 for HF 70B support
* examples/gguf : no need to keep q option for quantization any more
* llama.cpp : print actual model size
* llama.cpp : use ggml_elements()
* convert-new.py : output gguf (#2635)
* convert-new.py : output gguf (WIP)
* convert-new.py : add gguf key-value pairs
* llama : add hparams.ctx_train + no longer print ftype
* convert-new.py : minor fixes
* convert-new.py : vocab-only option should work now
* llama : fix tokenizer to use llama_char_to_byte
* tests : add new ggml-vocab-llama.gguf
* convert-new.py : tensor name mapping
* convert-new.py : add map for skipping tensor serialization
* convert-new.py : convert script now works
* gguf.py : pick some of the refactoring from #2644
* convert-new.py : minor fixes
* convert.py : update to support GGUF output
* Revert "ci : disable CI temporary to not waste energy"
This reverts commit
|
||
Evan Jones
|
604b8bdfa6
|
Fix unicode in grammars (fixes #2501) (#2553)
* Fix unicode in grammars (fixes #2501) * add more comments * fix test-llama-grammar |
||
drbh
|
7cf54e1f74
|
tests : adds simple llama grammar tests (#2618)
* adds simple llama grammar tests * fix lint and add Makefile * 0 terminate code_points * avoid dangling pointers in candidate cleanup * cleanup grammar at end of test |
||
drbh
|
ee77efea2a
|
test : add simple grammar parsing tests (#2594)
* adds simple grammar parsing tests * adds cassert header |
||
Eve
|
81844fbcfd
|
tests : Fix compilation warnings (Linux/GCC) (#2451)
* fix hellaswag print format, cast away warning in test-double-float * c++11 cannot use designated initializers * add static to test-grad0.c internal functions * use memcpy in test-double-float.c * port c tests to c++ * use initializer list for ggml_init_params |
||
slaren
|
41c674161f
|
make rms_norm_eps a parameter (#2374)
* make rms_norm_eps a parameter * add rms_norm_eps to command line * fix baby llama, test-grad0 * use scientific notation for eps param in the help ggml-ci |
||
Georgi Gerganov
|
5b2b2dc6ae
|
ggml : sync (unary ops refactor, static-correctness) (#2370)
* ggml : sync (unary ops, tests) ggml-ci * tests : remove unnecessary funcs |
||
wzy
|
b1f4290953
|
cmake : install targets (#2256)
fix #2252 |
||
Georgi Gerganov
|
d01bccde9f
|
ci : integrate with ggml-org/ci (#2250)
* ci : run ctest ggml-ci * ci : add open llama 3B-v2 tests ggml-ci * ci : disable wget progress output ggml-ci * ci : add open llama 3B-v2 tg tests for q4 and q5 quantizations ggml-ci * tests : try to fix tail free sampling test ggml-ci * ci : add K-quants ggml-ci * ci : add short perplexity tests ggml-ci * ci : add README.md * ppl : add --chunks argument to limit max number of chunks ggml-ci * ci : update README |
||
Georgi Gerganov
|
20d7740a9b
|
ggml : sync (abort callback, mul / add broadcast, fix alibi) (#2183) | ||
Evan Miller
|
5656d10599
|
mpi : add support for distributed inference via MPI (#2099)
* MPI support, first cut * fix warnings, update README * fixes * wrap includes * PR comments * Update CMakeLists.txt * Add GH workflow, fix test * Add info to README * mpi : trying to move more MPI stuff into ggml-mpi (WIP) (#2099) * mpi : add names for layer inputs + prep ggml_mpi_graph_compute() * mpi : move all MPI logic into ggml-mpi Not tested yet * mpi : various fixes - communication now works but results are wrong * mpi : fix output tensor after MPI compute (still not working) * mpi : fix inference * mpi : minor * Add OpenMPI to GH action * [mpi] continue-on-error: true * mpi : fix after master merge * [mpi] Link MPI C++ libraries to fix OpenMPI * tests : fix new llama_backend API * [mpi] use MPI_INT32_T * mpi : factor out recv / send in functions and reuse * mpi : extend API to allow usage with outer backends (e.g. Metal) --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> |
||
Qingyou Meng
|
1d656d6360
|
ggml : change ggml_graph_compute() API to not require context (#1999)
* ggml_graph_compute: deprecate using ggml_context, try resolve issue #287 * rewrite: no longer consider backward compitability; plan and make_plan * minor: rename ctx as plan; const * remove ggml_graph_compute from tests/test-grad0.c, but current change breaks backward * add static ggml_graph_compute_sugar() * minor: update comments * reusable buffers * ggml : more consistent naming + metal fixes * ggml : fix docs * tests : disable grad / opt + minor naming changes * ggml : add ggml_graph_compute_with_ctx() - backwards compatible API - deduplicates a lot of copy-paste * ci : enable test-grad0 * examples : factor out plan allocation into a helper function * llama : factor out plan stuff into a helper function * ci : fix env * llama : fix duplicate symbols + refactor example benchmark * ggml : remove obsolete assert + refactor n_tasks section * ggml : fix indentation in switch * llama : avoid unnecessary bool * ggml : remove comments from source file and match order in header --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> |
||
Georgi Gerganov
|
1b6efeab82
|
tests : fix test-grad0 | ||
Stephan Walter
|
1b107b8550
|
ggml : generalize quantize_fns for simpler FP16 handling (#1237)
* Generalize quantize_fns for simpler FP16 handling * Remove call to ggml_cuda_mul_mat_get_wsize * ci : disable FMA for mac os actions --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> |
||
katsu560
|
a84ab1da8d
|
tests : fix quantize perf (#1990)
* fix test quantize perf * avoid the global state |
||
Georgi Gerganov
|
65bdd52a86
|
tests : sync test-grad0 from ggml | ||
Alex Renda
|
b061ba9e2a
|
llama : fix top-p sampling to match the canonical definition (#1953)
* Fix top-p sampling to match the standard definition (smallest set that has probability mass at least p, not largest set with probability mass less than p) * top-p: correct gt to gte * add test for correct top-p behavior |
||
Didzis Gosko
|
527b6fba1d
|
llama : make model stateless and context stateful (llama_state) (#1797)
* llama : make model stateless and context stateful * llama : minor cleanup * llama : update internal API declaration * Apply suggestions from code review fix style Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Missing model memory release * Fix style * Add deprecated warning for public API function llama_init_from_file * Update public API use cases: move away from deprecated llama_init_from_file * Deprecate public API function llama_apply_lora_from_file --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> |
||
Borislav Stanimirov
|
9cbf50c041
|
build : fix and ignore MSVC warnings (#1889) | ||
xaedes
|
e32089b2c2
|
train : improved training-from-scratch example (#1652)
* add python wrapper https://gist.github.com/abetlen/2b90e5f153f6efd00931d098de5c73ce * fix decoding error. adds errors=ignore parameter * add python bindings for functions to get and set the whole llama state (rng, logits, embedding and kv_cache) * update python bindings * add text generating baby-llama from scratch example * fix race condition bug in ggml_compute_forward_diag_mask_f32 * implement ggml_soft_max_back for more performant backward pass of soft_max avoids creating big intermediate matrices of size n_embd x n_embd for llama layers and n_vocab x n_vocab for cross entropy loss * improve softmax backward pass go from quadratic runtime to linear runtime by simplifying the formulas * fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32 memcpy needs to be synchronized across threads to avoid race conditions. => do it in INIT phase * fix bug in ggml_compute_forward_soft_max_back_f32 on DEBUG build * improve performance of mul_mat backward pass avoid transpose by using mul_mat with swapped arguments * avoid printing too much newlines in baby-llama-text * activate threading in baby-llama-text * add ggml_out_prod and use it for mul_mat backward pass for improved performance performance stats report improvement from 37 seconds to 16 seconds runtime during my training tests * better weight initialization improves training convergence at start * better weight initialization improves training convergence at start * improve ggml_out_prod performance - change iteration order (>15s -> 10s runtime) - parallelize over one more dimension: over dst matrix rows (10s -> <5s runtime) * add llama sampler, shuffle samples and constrain sampling to tokens occurring in train data * fix get_samples call, add model tensor names, increase model size, start training samples after newline * save train trained model to checkpoint and load model to be trained from checkpoint * use inplace functions where possible * initialize rng with srand * use different arguments for input and output checkpoint * ggml fixes to support backward pass on inplace operations * remove duplicate include * fix cross entropy loss - add target probabilities for each sample which is then used in cross entropy loss * print used memory before and after optimization * sample with non-greedy sampling parameters at the end of training * add cmake target for baby-llama-text * add ggml_add1_inplace to header * enable gradient propagation for inplace add1 and scale operations those functions backward passes don't need the original src0, so they also work when forward is inplace * implement AdamW in ggml_opt_adam by adding weight decay parameter (default 0.001f) also add a schedule parameter (default 1.0f) that can be used to scale alpha and decay according to learning schedule. setting the decay parameter to zero disables AdamW resulting in normal Adam optimizer. since the difference between Adam and AdamW is minimal it is not implemented as another optimizer, but integrated into the existing Adam optimizer. * use inplace operations in cross_entropy_loss * fix random weight initialization scale * add missing default parameters for adam optimizer * add ggml_opt_context, so that we can properly resume training otherwise the optimizer states, tracking statistics about the error function and its derivates, will reset to zero each time ggml_opt is called, hindering convergence on resumed training. now the optimizer context and all its memory is stored in a separate struct. * fix bug in llama_sample_token_mirostat_v2 when all candidates are filtered out through mu threshold, the following soft_max operation will fail. so keep at least one. * add forward function without using cache, for more performant training during training on whole samples no cache is required. removing the cache and simplifying the remaining code results in performance and memory usage improvement. * print suppressed newline tokens as string "\n" printing too much actual newlines is suppressed to avoid flooding the console. * store optimizer state in training checkpoint and add learning schedule persistent optimizer state allows to resume training without resetting the optimizer learning schedule consists of linear warmup ramp followed by cosine decay with restarts * remove unused functions * fix bug in get_samples which corrupted training targets * save checkpoint only when it was trained * simplify code * remove trailing whitespace * simplify backward pass for SQRT * replace inefficient repeat backward pass with dedicated repeat_back operation * add ggml_cross_entropy_loss with backward pass for faster training cross entropy loss can also be implemented using softmax and log, but as dedicated operation it is faster and especially avoids unnecessary memory overhead. * add tests for cross_entropy_loss backward pass finite differences regularly results in estimated gradient of zero, despite the backward pass giving non zero gradient. _probably_ the finite differences fails due to numerical issues * use ggml_cross_entropy_loss in text training example * remove trailing whitespace * slightly improve how cross entropy loss is compute btw: directly implemented cross entropy loss seems to have way lower magnitudes than when implemented with softmax and log. probably the input to log gets closer to zero due to float numerics. maybe the multiplication by (1.0-eps)/sum is more accurate.. * add llama_get_vocab to get the vocabulary as output parameters * set default model.type for unknown models with few layers * add export of training checkpoint to llama compatible model file * get vocabulary for exporting training checkpoint to llama compatible model file * implement backward pass of flash attention * bugfixes for backward pass of flash attention * test flash attention backward pass need to set loose error bounds to pass. the finitie differences are close to numeric limits and often return quite different values than the backward pass. reducing eps further lets the gradients vanish completely. likewise setting eps to big results in wronger values. the softmax in the middle of the function is probably the most responsible for the numeric issues using finite differences. * add option to train with flash attention and move options to the top of the main function training from scratch also works with flash attention training convergence and generation results after fix number of iterations are worse than when not using flash attention. maybe there still lingers a bug in the flash attention backward pass? but training works, just with slower convergence. flash attention is still worth to use, because it requires way less memory and is faster with high n_ctx * add train_params and command line option parser * remove unnecessary comments * add train params to specify memory size * remove python bindings * rename baby-llama-text to train-text-from-scratch * replace auto parameters in lambda function * add #include <climits> * add explicit cast to fix compile error "error: non-constant-expression cannot be narrowed from type 'int64_t' (aka 'long long') to 'uint32_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]" * remove trailing whitespace * add ggml_opt_resume_g which accepts forward and backward cgraphs * fix formulas in comments * bug fix for ggml_compute_forward_get_rows_back_f32 the result should be set to zero, not to whatever data is in opt0 * improve training memory usage with scratch buffers instead of relying on the automatic backward pass, we manually create the graph for the backward pass. it turns out that all backward pass operations need only temporary memory which can be reused after each layer. will compute backward pass for ALL model parameters * add option to use scratch buffers in training or not make it configurable because currently training with scratch buffers implies flash attention and optimization over all parameters. * ci : disable temporary * store view offset and permute axes in opt[0] instead of storing it in padding use memcpy to store offset, because offset is of type size_t. when storing it as int32_t offset would have to be smaller than 2^31 which is not necessarily true. * minor : fix compile warnings + minor style changes * fix bug in threaded indices calculation of ggml_compute_forward_flash_attn_back_f32 * store view offset like in master branch * bug fix in forward_batch_wo_cache_flash_attn_train * scratch buffer bug fixes in forward_batch_wo_cache_flash_attn_train data of permute and reshape is the same as their input. if we want to preserve the output of permute/reshape, we also need to preserve their inputs. replace reshape(src0, src1) with reshape_nd calls so that we don't need src1. replace (temporary) t03 with ggml_repeat(ctx0, layer.attention_norm, t02). in the future we could also use the new broadcasting ggml_mul to avoid these repeat calls. for this we need backward pass of broadcasting ggml_mul. * remove unnecessary scratch buffer 0 buf 0 is persistent memory, so we can just disable scratch for this by using buf -1 * avoid creating unnecessary grad tensors previously we need to create grads for model parameters, so that expand(..) correctly populates cgraph->leafs & cgraph->grads this wasted memory, because unnecessary grad for each op were automatically created: the automatically generated grad was unnecessary because we later manually set the grad (e.g. t35->grad = expand(gb, ...) ). this discarded the automatically generated grad resulting in wasted memory. improved this by changing expand(..) to not use ggml_build_forward_expand. expand set cgraph->nodes but not the leafs. cgraph->leafs & cgraph->grads are set in another pass after the last expand call. * print used training seed * zero initialize gfbuf and gbbuf * ci : re-enable workflows + add README for training --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> |
||
Kawrakow
|
99009e72f8
|
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684)
* Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> |
||
Georgi Gerganov
|
6986c7835a
|
tests : add missing header | ||
Georgi Gerganov
|
4b7e245adf
|
minor : fix compile warnings | ||
xaedes
|
f954edda93
|
ggml : implement backward pass for llama + small training-llama-from-scratch example (#1360)
* implement 8 of 14 missing backward pass operations used by llama - GGML_OP_ADD_AT - GGML_OP_CPY - GGML_OP_MUL_MAT (src0.grad) - GGML_OP_PERMUTE - GGML_OP_RESHAPE - GGML_OP_SCALE - GGML_OP_TRANSPOSE - GGML_OP_VIEW implement additional ggml operation GGML_OP_ADD_AT, which is necessary for backward pass of GGML_OP_VIEW. this operation adds src1 to src0 with data offset, i.e. to view(src0, ..., offset). the values are return in a tensor size of src0. values outside of [data+offset:data+offset+nbytes(src1)] are just the original values from src0. still missing backward passes for llama: - GGML_OP_DIAG_MASK_INF - GGML_OP_GET_ROWS - GGML_OP_RMS_NORM - GGML_OP_ROPE - GGML_OP_SILU - GGML_OP_SOFT_MAX * implement 5 of 6 missing backward pass operations used by llama - GGML_OP_DIAG_MASK_INF - GGML_OP_GET_ROWS - GGML_OP_RMS_NORM - GGML_OP_SILU - GGML_OP_SOFT_MAX add necessary ggml operations GGML_OP_ADD1, GGML_OP_SILU_BACK, GGML_OP_RMS_NORM_BACK, GGML_OP_DIAG_MASK_ZERO, and GGML_OP_ROPE_BACK GGML_OP_ADD1 is necessary to add a scalar value in the backward pass of GGML_OP_SOFT_MAX GGML_OP_ADD1 could also be replaced by using GGML_OP_ADD and GGML_OP_REPEAT, but the performance would be worse. additionally GGML_OP_REPEAT will return unexpected value when the the input to GGML_OP_SOFT_MAX contains only a single scalar. in this case GGML_OP_REPEAT will not return the value that should be repeated (src1) but the value which shape the result should take (src0). So in this case it can not replace GGML_OP_ADD1. GGML_OP_SILU_BACK, GGML_OP_RMS_NORM_BACK and GGML_OP_ROPE_BACK are necessary for backward pass of GGML_OP_SILU, GGML_OP_RMS_NORM and GGML_OP_ROPE. The backward pass for these functions cannot be easily composed of existing operations. Since the backward pass builds a computation graph we need operations forward pass implementations of the the required backward passes. Sounds a bit confusing at first, I know... GGML_OP_DIAG_MASK_ZERO is necessary for backward pass of GGML_OP_DIAG_MASK_INF. Some operations where previously inplace-only. for backward pass there needs to be non-inplace variants. staying consistent with other operations that have non-inplace and inplace variants, the operations are changed to non-inplace and functions with "_inplace" are added which are inplace. in llama we need to call the inplace variants so that it is implemented as before. for llama backward pass we need to use the non-inplace variants. still not completely implemented backward passes for llama: - GGML_OP_ROPE: needs forward pass for GGML_OP_ROPE_BACK - GGML_OP_GET_ROWS: only necessary for tokenizer * norm & rms_norm can not be threaded: after investigation rms norm for quite some time I come to the conclusion that neither norm, nor rms_norm can be threaded, because we need mean over all items, not just of the slices each thread sees. * remove already resolved TODO * implement backward pass of ggml_rope and ggml_rope_back * implement backward pass for ggml_get_rows and for new operation ggml_get_rows_back * add test-grad0.c * use GGML_PRINT_DEBUG for debug messages which will otherwise flood the console * test both gradients of mul_mat * disable graph dot export as it floods console * bug fixes for silu_back * successfully test silu backward * bug fix for scale backward pass use sum instead of mean for gradient of scalar scale parameter * successfully test scale backward * improve performance of sum backward pass use add1(x,y) instead of add(x,repeat(y,x)) * improve performance of sqr backward pass use scale(x,y) instead of mul(x,repeat(y,x)) * successfully test rope backward * bug fix for cpy backward pass * successfully test cpy backward * bug fix for reshape backward pass * successfully test reshape backward * add test-opt.c this uses ggml_opt to train a,b for minimal e=sum(sqr(c - a*b)) for random initial a,b,c * correctly implement softmax backward pass using new operation ggml_diag ggml_diag constructs diagonal matrices with entries. ggml_diag(shape[a,1,c,d]) -> shape[a,a,c,d] * successfully test soft_max backward * align shape annotations * add shape annotations for llama * de-duplicate ggml_forward_dup code taking care of contiguous tensors of same type. with this we can duplicate tensor of any typ as long as they are contiguous. * fix ggml_compute_forward_dup_same_cont for when nelements < nthreads when more threads are used than elements exist ie1 was less than ie0, resulting in invalid negative byte count argument in memcpy * bug fix for add_at forward required for view backward pass src0 values must be copied to dst, because during addition we don't touch all dst elements in contrast to the normal add function. * successfully test view backward * minor code format improvement * fix ggml_forward_add functions to work correctly with transposed tensors uses the same logic as in ggml_compute_forward_add_q_f32, but make it consistent across all ggml_compute_forward_add_... functions. this also slightly changes the mem access pattern of the different threads to works as in ggml_compute_forward_add_q_f32. * fix ggml_forward_add1 functions to work correctly with transposed tensors uses the same logic as in ggml_compute_forward_add1_q_f32, but make it consistent across all ggml_compute_forward_add1_... functions. this also slightly changes the mem access pattern of the different threads to works as in ggml_compute_forward_add1_q_f32. * test-grad0.c : add print_elements to help with debugging * successfully test permute backward * some minor test-grad0 fixes * fix sub, mul and div functions to work correctly with transposed tensors uses the same logic as in add * implement ggml_cont backward pass * successfully test transpose backward and permute for all permutations also test sub, mul and div up to max n_dims * test-grad0.c add TODO for view_2d and view_3d add_at (required for view backward pass) is a bit tricky for n_dims > 1. * fix comments * successfully test diag_mask_inf and diag_mask_zero backward * test-grad0 : fix test for div nargs and ndims was swapped, corrupting the stack * fix diag_mask to work with non-inplace input * move dup call into the actual add_at functions * fix get rows backward pass * successfully test get_rows backward * fix view backward pass add nb parameters to add_at like in view. together with offset they define how to view dst and src0 during the add_at operation. * successfully test backward pass of view_1d, view_2d and view_3d * fix backward pass for rms_norm I would have used formulas from other frameworks, but they differed so I could not decide which is correct. Instead it was derived here in comment using manual forward-backward automatic differention of rms_norm and simplification. * successfully test backward pass of rms_norm some tests may fail when gradients are large. could not find a satisfying configuration to check for abs error and relative error that passes all tests while still actually testing the results with tight enough error bounds. when looking at the values the "failed" tests look actually ok. for example: rms_norm: ndims=2, i=0, k=2, x0=0.000153, xm=0.000053, xp=0.000253, f0=0.278594, f1=0.086213, g0=961.905457, g1=966.064941, eps=0.000100, error_abs=4.159485, error_rel=0.004324 it is due to the test logic in check_gradients that they fail. * add todos for llama backward pass - implementation for ADD1 backward pass should probably use sum instead of mean (but this backward pass is not required) - repeat is not yet tested and looks like it only works for single element src0 inputs. * add operation ggml_sum_rows ggml_sum_rows(shape[a,b,c,d]) -> shape[1,b,c,d] * add missing GGML_OP_SUM_ROWS * fix backward pass for repeat requires ggml_sum_rows * successfully test backward pass of repeat * update quantization types in switch-case of add_at and add1 * add baby-llama example training a very small llama model from scratch to output a sinusoidal wave. had to increase maximum number of optimization parameters to train from scratch. * fix softmax in baby-llama example * switching from training with adam to lbfgs produces much better results in the baby-llama example * train with two examples, creating new tensors each time.. * fix bug when using ggml_opt to optimize params in one context and use a renewable context for eval and opt when not keeping gradients of model parameters they are overwritten by tensors created by opt, which may be invalid after opt context is renewed. so we need to keep the original gradients and make dups for opt * train on multiple examples, generate & print tokens with trained model afterwards ctx0 for evaluation and optimization is renewed for each sample * add ggml_reshape_1d, ggml_reshape_4d and ggml_view_4d * fix soft_max backward pass for input->ne[1] != 1 * add ggml_log operation necessary for cross entropy loss * add test for ggml_log gradients * implement backward pass for ggml_sum_rows, necessary for cross entropy loss * implement ggml_repeat support for rank > 2 tensors * add test for ggml_sum_rows gradients * fix training get_example_targets predict the next token, not the current token! * add square_error_loss and cross_entropy_loss functions * optimize loss over multiple samples this increases computation graph, need parallel batched forward for more efficiency. * fix backward pass for add_at and change arguments to have same order as in view * add ggml_set(ctx, a, b) to set b in view of a and return modified a necessary to set values into kv_self cache and properly propagate the gradients * fix kv_self gradients for training use ggml_set instead of ggml_cpy to set kv_self cache with properly propagating gradients * replace inplace operations for training with copying operations to allow gradient propagation * add GGML_ASSERT to catch ggml_rope and back value errors * add trainable lora-only model with all big matrices C split into A,B with A*B=C this is not a lora-finetune, but the whole model changed to have only low-rank "lora" matrices. training this instead of the normal model resulted in much worse results though... * vastly improve training results instead of logit targets 0 and 1 use -1 and +1. * shorten code using a variable * change name of GGML_OP_ADD_AT to GGML_OP_ACC * smaller default values for baby llama model parameters * update static assert of GGML_OP_COUNT * remove shape annotations in llama_eval_internal * revert disabling of threading for rms_norm and norm * rename print functions in baby-llama example * fix call to ggml_set_name * add missing include for strcmp, etc * remove trailing whitespace * reduce number of test-grad0 iterations avoid exceeding timeout of automated tests * remove busy loop that was used as sleep for slower sinus wave generation * disable slow tests grad0 and opt to avoid exceeding timeouts * c++ in baby-llama example use c++ includes instead of c includes use std::min, std::max instead of MIN, MAX macros * c++ in baby-llama example use c++ includes instead of c includes use std::min, std::max instead of MIN, MAX macros * ggml : fix compiler warnings + cosmetic changes * ggml : fix nullptr derefs in GGML_OP_CONT and GGML_OP_RESHAPE back * swap arguments to vDSP_vdiv call documentation for vDSP_vdiv states: "Note that B comes before A!" * swap arguments to vDSP_vdiv call documentation for vDSP_vdiv states: "Note that B comes before A!" * ggml : swap vDSP_vsub args as per documentation * add parallel batched forward function for baby-llama training * cleanup code for batched training * remove trailing whitespace * minor : fix compiler warnings + indentation style * ggml : fix null ptr deref in backward pass * ggml : remove Q4_2 remnants * ggml : fix clang-tidy warnings * baby-llama : couple of clang-tidy warnings --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> |
||
Jed Fox
|
3924088512
|
Remove default arguments from sampling functions (#1343) | ||
Georgi Gerganov
|
0e6cbff1b7
|
llama : fix compile warnings | ||
Ivan Stepanov
|
dd7eff57d8
|
llama : new sampling algorithms (#1126)
* Sample interface, new samplers. New samplers: - locally typical sampling - tail free sampling - frequency and presence penalty - mirostat Ignore EOS fix: -inf should be used. * mirostat * Added --logit-bias and --no-penalize-nl, removed std::span * Use C++11, clarify llama API documentation, rename Mirostat parameters to --mirostat_lr and --mirostat_ent, add temperature sampling for Mirostat, simplify Mirostat sampling API parameters (removed N and *k) Use C++11, clarify llama API documentation, rename Mirostat parameters to --mirostat_lr and --mirostat_ent, add temperature sampling for Mirostat, simplify Mirostat sampling API parameters (removed N and *k) * Save and load example adjust * Tests * Windows build fix * Windows test fix |
||
Georgi Gerganov
|
7a32fcb3b2
|
ggml : add Q8_0 quantization format (rename the old one to Q8_1) (ARM NEON) (#1179)
* ggml : add Q8_0 quantization format (rename the old one to Q8_1) * tests : fix test-quantize-fns * ggml : finalize Q8_0 implementation * ggml : use q4_0_q8_0 and q4_2_q8_0 * ggml : fix Q8_0 dot product bug (ARM) * ggml : Q8_0 unroll x2 * ggml : fix bug - using wrong block type * ggml : extend quantize_fns_t with "vec_dot_type" * ggml : fix Q8_0 to use 255 values out of 256 * ggml : fix assert using wrong QK4_2 instead of QK4_3 |
||
Stephan Walter
|
c50b628810
|
Fix CI: ARM NEON, quantization unit tests, editorconfig (#1122) | ||
unbounded
|
5f939498d5
|
ggml : unit test for quantization functions (#953)
* Unit test for quantization functions Use the ggml_internal_get_quantize_fn function to loop through all quantization formats and run a sanity check on the result. Also add a microbenchmark that times these functions directly without running the rest of the GGML graph. * test-quantize-fns: CI fixes Fix issues uncovered in CI - need to use sizes divisible by 32*8 for loop unrolling - use intrinsic header that should work on Mac * test-quantize: remove Per PR comment, subsumed by test-quantize-fns * test-quantize: fix for q8_0 intermediates |
||
Arik Poznanski
|
efd05648c8
|
llama : well-defined static initialization of complex objects (#927)
* Replaced static initialization of complex objects with a initialization on first use. This prevents an undefined behavior on program run, for example, crash in Release build, works in Debug build * replaced use of auto with exact type to avoid using -std=c++14 * Made the assessors functions for static maps be static const |
||
Georgi Gerganov
|
d502bc7c9d
|
tests : free llama context at the end of the test | ||
Stephan Walter
|
436e561931
|
all : be more strict about converting float to double (#458)
* Be more strict about converting float to double * Test equivalence of round, SILU implementations Test module is commented out in CMakeLists.txt because the tests may take a long time, depending on how much the compiler optimizes. * Fix softmax in perplexity.cpp * all : prefer float over double where appropriate * perplexity : add <cmath> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> |