* add control-vector-generator
* calc diff
* add comments
* proof-of-concept stdlib implementation
Implements PCA and file writing using mostly standard libraries. The output is recognized as a functional control vector, but outputs gibberish.
* param parsing, refactor, comments
Added basic command-line parameters for outfile and one each positive/negative prompt.
Refactored some messy code in PCA computation and GGUF exporting.
Left a bunch of comments regarding further work needed.
* example template completions
Implements an example template set built from the positive/negative prompts like the control vector Python implementation.
* add multi prompts, multi-thread for PCA
* fix mem error
* add debugs
* fix matrix transpose multiplication
you have got to be kidding me
* preliminary template/multiprompt support
model is running out of context and that ought to be fixed (segfaulting) but other than that it looks goodish
* fix zero output & param parsing, functional templating
fixed a bug where the output file had no tensor data/was all zero
fixed a bug where single hyphen flags were not being correctly parsed
implements creation of templated prompts from input (still need to adapt based on model)
* fix square_diff matmul index range and CRLF->LF line endings
fixed a logic error where square_diff would not multiply all rows
fixed a formatting error where the provided completions.txt had CRLF line endings
* add command-line args for num threads, num completions file lines, always reload model
refactored a few things and did what the commit message says on the tin
* code aestheticization
* fix compiler warnings
* in-series multithreading for prompt embedding?
added commented-out code to attempt to start implementing mutlithreading for embedding in main
* remove unnecessary multithreading
* interim fix memory leak
* translated everything but PCA (I think)
* tentatively translate the rest
* fix ggml errors and make new ones
at least it compiles and runs
* fix cb_eval
* temporary commit while I move dev environments
it finally outputs a functioning control vector - "functioning" in the sense that it can be loaded and it clearly has the right idea, but makes the model incoherent
* update debug statements
* pre-tokenize so we can allocate correct memory to ctx_diffs_wrapped
* update comments
* (wip) refactor
* clean up PCA ggml implementation
* fix shape of v_diff_original
* add n_batch for pca
* working version
* remember to copy back the last_eigenvector
* fix n_completions
* bring back n_completions
* default n_pca_batch to 20
* fix macos build
* add to makefile all targets
* use ggml_format_name
* add readme
* fix .editorconfig
* use ggml_backend_tensor_copy
* attemp to fix compile problem on mac
* fix compile warn
* reuse allocr
* move param parser to common
* better error handling
* clean up a bit
* add print_usage
* shorten help msg
* beautify help msg
* escape prompt by default
* change compile target to llama-cvector-generator
* typo
* disable GPU for PCA
* code style
---------
Co-authored-by: Christian Zhou-Zheng <christianzhouzheng@gmail.com>
* move BLAS to a separate backend
* rename GGML_USE_OPENBLAS to GGML_USE_BLAS
* alloc : reuse same buffer when the same buffer type if used multiple times
* set number of threads automatically for openblas and blis
* sched : print assignments when GGML_SCHED_DEBUG env variable is set
* sched : allow ops with weights on an incompatible buffer type
This will cause the weight to be copied to a backend that supports the
op, which is very costly. The weight should have been stored in a buffer
of a backend that can run the op, but llama.cpp cannot do this
automatically at the moment.
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : offload to RPC in addition to other backends
* - fix copy_tensor being called on the src buffer instead of the dst buffer
- always initialize views in the view_src buffer
- add RPC backend to Makefile build
- add endpoint to all RPC object names
* add rpc-server to Makefile
* Update llama.cpp
Co-authored-by: slaren <slarengh@gmail.com>
---------
Co-authored-by: slaren <slarengh@gmail.com>
* ggml: Added OpenMP for multi-threads processing
* ggml : Limit the number of threads used to avoid deadlock
* update shared state n_threads in parallel region
* clear numa affinity for main thread even with openmp
* enable openmp by default
* fix msvc build
* disable openmp on macos
* ci : disable openmp with thread sanitizer
* Update ggml.c
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* ic
* migrate my eary work
* add the belonging stuff: css,favicon etc
* de prompts
* chore: Update HTML meta tags in index.html file
* add api-key css classes
* some necessary fixes
* Add API key CSS classes and update styling in style.css
* clean the code
* move API to the top, rearrange param sliders. update css
* add tooltips to the parameters with comprehensible explanations
* fix FloatField and BoolField tooltips
* fix grammar field width
* use template literales for promptFormats.js
* update const ModelGenerationInfo
* remove ms per token, since not relevant for most webui users and use cases
* add phi-3 prompt template
* add phi3 to dropdown
* add css class
* update forgotten css theme
* add user message suffix
* fix chatml & add llama3 format
* fix llama3 prompt template
* more prompt format fixes
* add more comon stop tokens
* add missing char
* do not separate with new line or comma
* move prompt style
* add hacky llama2 prompt solution, reduce redundancy in promptFormats.js
* fix toggle state localstorage
* add cmd-r prompt et reduce redundancy
* set default prompt to empty
* move files, clean code
* fix css path
* add a button to the new ui
* move new ui to "/public" due to otherwise problematic CORS behaviour
* include new ui in cpp
* fix wrong link to old ui
* renaming to ensure consistency
* fix typos "prompt-format" -> "prompt-formats"
* use correct indent
* add new ui files to makefile
* fix typo
Supercedes #4024 and #4813.
CMake's native HIP support has become the
recommended way to add HIP code into a project (see
[here](https://rocm.docs.amd.com/en/docs-6.0.0/conceptual/cmake-packages.html#using-hip-in-cmake)).
This PR makes the following changes:
1. The environment variable `HIPCXX` or CMake option
`CMAKE_HIP_COMPILER` should be used to specify the HIP
compiler. Notably this shouldn't be `hipcc`, but ROCm's clang,
which usually resides in `$ROCM_PATH/llvm/bin/clang`. Previously
this was control by `CMAKE_C_COMPILER` and `CMAKE_CXX_COMPILER`.
Note that since native CMake HIP support is not yet available on
Windows, on Windows we fall back to the old behavior.
2. CMake option `CMAKE_HIP_ARCHITECTURES` is used to control the
GPU architectures to build for. Previously this was controled by
`GPU_TARGETS`.
3. Updated the Nix recipe to account for these new changes.
4. The GPU targets to build against in the Nix recipe is now
consistent with the supported GPU targets in nixpkgs.
5. Added CI checks for HIP on both Linux and Windows. On Linux, we test
both the new and old behavior.
The most important part about this PR is the separation of the
HIP compiler and the C/C++ compiler. This allows users to choose
a different C/C++ compiler if desired, compared to the current
situation where when building for ROCm support, everything must be
compiled with ROCm's clang.
~~Makefile is unchanged. Please let me know if we want to be
consistent on variables' naming because Makefile still uses
`GPU_TARGETS` to control architectures to build for, but I feel
like setting `CMAKE_HIP_ARCHITECTURES` is a bit awkward when you're
calling `make`.~~ Makefile used `GPU_TARGETS` but the README says
to use `AMDGPU_TARGETS`. For consistency with CMake, all usage of
`GPU_TARGETS` in Makefile has been updated to `AMDGPU_TARGETS`.
Thanks to the suggestion of @jin-eld, to maintain backwards
compatibility (and not break too many downstream users' builds), if
`CMAKE_CXX_COMPILER` ends with `hipcc`, then we still compile using
the original behavior and emit a warning that recommends switching
to the new HIP support. Similarly, if `AMDGPU_TARGETS` is set but
`CMAKE_HIP_ARCHITECTURES` is not, then we forward `AMDGPU_TARGETS`
to `CMAKE_HIP_ARCHITECTURES` to ease the transition to the new
HIP support.
Signed-off-by: Gavin Zhao <git@gzgz.dev>
* DRAFT: Introduction of CUDA Graphs to LLama.cpp
* FIx issues raised in comments
* Tidied to now only use CUDA runtime (not mixed with driver calls)
* disable for multi-gpu and batch size > 1
* Disable CUDA graphs for old GPU arch and with env var
* added missing CUDA_CHECKs
* Addressed comments
* further addressed comments
* limit to GGML_ALLOW_CUDA_GRAPHS defined in llama.cpp cmake
* Added more comprehensive graph node checking
* With mechanism to fall back if graph capture fails
* Revert "With mechanism to fall back if graph capture fails"
This reverts commit eb9f15fb6f.
* Fall back if graph capture fails and address other comments
* - renamed GGML_ALLOW_CUDA_GRAPHS to GGML_CUDA_USE_GRAPHS
- rename env variable to disable CUDA graphs to GGML_CUDA_DISABLE_GRAPHS
- updated Makefile build to enable CUDA graphs
- removed graph capture failure checking in ggml_cuda_error
using a global variable to track this is not thread safe, but I am also not safistied with checking an error by string
if this is necessary to workaround some issues with graph capture with eg. cuBLAS, we can pass the ggml_backend_cuda_context to the error checking macro and store the result in the context
- fixed several resource leaks
- fixed issue with zero node graphs
- changed fixed size arrays to vectors
- removed the count of number of evaluations before start capturing, and instead changed the capture mode to relaxed
- removed the check for multiple devices so that it is still possible to use a single device, instead checks for split buffers to disable cuda graphs with -sm row
- changed the op for checking batch size to GGML_OP_ADD, should be more reliable than GGML_OP_SOFT_MAX
- code style fixes
- things to look into
- VRAM usage of the cudaGraphExec_t, if it is significant we may need to make it optional
- possibility of using cudaStreamBeginCaptureToGraph to keep track of which ggml graph nodes correspond to which cuda graph nodes
* fix build without cuda graphs
* remove outdated comment
* replace minimum cc value with a constant
---------
Co-authored-by: slaren <slarengh@gmail.com>
* imatrix: save the dataset file used in the output file
* llama: support kv overrides type string string
* common: factorize KV Overrides parsing between common and server
* quantize: add imatrix n entries and dataset KV metadata
quantize: factorize KV Overrides parsing between common
#6656
* llama: remove kv override str_value initialization as it does not compile on some toolchain
* quantize: add imatrix m_last_call as `quantize.imatrix.chunks_count`
* quantize: add imatrix filename in KV
* llama: add llama_model_kv_override_free
* common: add llama_model_kv_override_free
common: free kv override if used after model loading
* llama: finally move the string KV override value to the stack
* llama : minor
* no need to add a NUL to the std::vector, std::string can be initialized from a pair of iterators.
Co-authored-by: slaren <slarengh@gmail.com>
* kv override: ensure string termination
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
* llamafile : improve sgemm.cpp
- Re-enable by default
- Fix issue described in #6716
- Make code more abstract, elegant, and maintainable
- Faster handling of weirdly shaped `m` an `n` edge cases
* Address review comments
* Help clang produce fma instructions
* Address review comments
* `build`: generate hex dumps of server assets on the fly
* build: workaround lack of -n on gnu xxd
* build: don't use xxd in cmake
* build: don't call xxd from build.zig
* build: more idiomatic hexing
* build: don't use xxd in Makefile (od hackery instead)
* build: avoid exceeding max cmd line limit in makefile hex dump
* build: hex dump assets at cmake build time (not config time)
This change upstreams llamafile's cpu matrix multiplication kernels
which improve image and prompt evaluation speed. For starters, Q4_0
and Q8_0 weights should go ~40% faster on CPU. The biggest benefits
are with data types like f16 / f32, which process prompts 2x faster
thus making them faster than quantized data types for prompt evals.
This change also introduces bona fide AVX512 support since tinyBLAS
is able to exploit the larger register file. For example, on my CPU
llama.cpp llava-cli processes an image prompt at 305 tokens/second,
using the Q4_K and Q4_0 types, which has always been faster than if
we used f16 LLaVA weights, which at HEAD go 188 tokens/second. With
this change, f16 LLaVA performance leap frogs to 464 tokens/second.
On Intel Core i9-14900K this change improves F16 prompt perf by 5x.
For example, using llama.cpp at HEAD with Mistral 7b f16 to process
a 215 token prompt will go 13 tok/sec. This change has fixes making
it go 52 tok/sec. It's mostly thanks to my vectorized outer product
kernels but also because I added support for correctly counting the
number of cores on Alderlake, so the default thread count discounts
Intel's new efficiency cores. Only Linux right now can count cores.
This work was sponsored by Mozilla who's given permission to change
the license of this code from Apache 2.0 to MIT. To read more about
what's improved, and how it works, see: https://justine.lol/matmul/
* Refactor Error Handling for CUDA
Add guidance for setting CUDA_DOCKER_ARCH to match GPU compute capability for CUDA versions < 11.7. Include link to NVIDIA's CUDA GPUs documentation for compute capability reference.
* Update Makefile
Improved wording
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* gguf-debug: Example how to use ggml callback for debugging
* gguf-debug: no mutex, verify type, fix stride.
* llama: cv eval: move cb eval field in common gpt_params
* ggml_debug: use common gpt_params to pass cb eval.
Fix get tensor SIGV random.
* ggml_debug: ci: add tests
* ggml_debug: EOL in CMakeLists.txt
* ggml_debug: Remove unused param n_batch, no batching here
* ggml_debug: fix trailing spaces
* ggml_debug: fix trailing spaces
* common: fix cb_eval and user data not initialized
* ci: build revert label
* ggml_debug: add main test label
* doc: add a model: add a link to ggml-debug
* ggml-debug: add to make toolchain
* ggml-debug: tests add the main label
* ggml-debug: ci add test curl label
* common: allow the warmup to be disabled in llama_init_from_gpt_params
* ci: add curl test
* ggml-debug: better tensor type support
* gitignore : ggml-debug
* ggml-debug: printing also the sum of each tensor
* ggml-debug: remove block size
* eval-callback: renamed from ggml-debug
* eval-callback: fix make toolchain
---------
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Added integration tests for GBNF parser to validate correctness of parsing, as well as correctness of string matching. Intended for use to pin behavior while working on performance improvements.
* Fixing whitespace errors and cleaning error message alert to be clearer.
* Removing hacky include to llama.cpp from grammar integration test now that needed functions are available via internal API.
* Comment cleanup.
* Reorganizing tests for readability.
* Cleaning up debug message to make a bit more sense.
* gguf-split: split and merge gguf files per tensor
* gguf-split: build with make toolchain
* gguf-split: rename `--split-tensors-size` to `--split-max-tensors`. Set general.split_count KV to all split
* split : minor style + fix compile warnings
* gguf-split: remove --upload not implemented
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : add pipeline parallelism support for batch processing with multiple CUDA GPUs
ggml-ci
* server : add -ub, --ubatch-size parameter
* fix server embedding test
* llama : fix Mamba inference for pipeline parallelism
Tested to work correctly with both `main` and `parallel` examples.
* llama : limit max batch size to n_batch
* add LLAMA_SCHED_MAX_COPIES to configure the number of input copies for pipeline parallelism
default increase to 4 (from 2)
changing this value may improve performance for some systems, but increases memory usage
* fix hip build
* fix sycl build (disable cpy_tensor_async)
* fix hip build
* llama : limit n_batch and n_ubatch to n_ctx during context creation
* llama : fix norm backend
* batched-bench : sync after decode
* swiftui : sync after decode
* ggml : allow ggml_get_rows to use multiple threads if they are available
* check n_ubatch >= n_tokens with non-casual attention
* llama : do not limit n_batch to n_ctx with non-casual attn
* server : construct batch with size of llama_n_batch
* ggml_backend_cpu_graph_compute : fix return value when alloc fails
* llama : better n_batch and n_ubatch comment
* fix merge
* small fix
* reduce default n_batch to 2048
---------
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add gritlm example
* gritlm results match
* tabs to spaces
* comment out debug printing
* rebase to new embed
* gritlm embeddings are back babeee
* add to gitignore
* allow to toggle embedding mode
* Clean-up GritLM sample code.
* Fix types.
* Flush stdout and output ending newline if streaming.
* mostly style fixes; correct KQ_mask comment
* add causal_attn flag to llama_cparams
* gritml : minor
* llama : minor
---------
Co-authored-by: Douglas Hanley <thesecretaryofwar@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add cmake build toggle to enable ssl support in server
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* add flags for ssl key/cert files and use SSLServer if set
All SSL setup is hidden behind CPPHTTPLIB_OPENSSL_SUPPORT in the same
way that the base httlib hides the SSL support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* Update readme for SSL support in server
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* Add LLAMA_SERVER_SSL variable setup to top-level Makefile
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* server : refactoring (wip)
* server : remove llava/clip objects from build
* server : fix empty prompt handling + all slots idle logic
* server : normalize id vars
* server : code style
* server : simplify model chat template validation
* server : code style
* server : minor
* llama : llama_chat_apply_template support null buf
* server : do not process embedding requests when disabled
* server : reorganize structs and enums + naming fixes
* server : merge oai.hpp in utils.hpp
* server : refactor system prompt update at start
* server : disable cached prompts with self-extend
* server : do not process more than n_batch tokens per iter
* server: tests: embeddings use a real embeddings model (#5908)
* server, tests : bump batch to fit 1 embedding prompt
* server: tests: embeddings fix build type Debug is randomly failing (#5911)
* server: tests: embeddings, use different KV Cache size
* server: tests: embeddings, fixed prompt do not exceed n_batch, increase embedding timeout, reduce number of concurrent embeddings
* server: tests: embeddings, no need to wait for server idle as it can timout
* server: refactor: clean up http code (#5912)
* server : avoid n_available var
ggml-ci
* server: refactor: better http codes
* server : simplify json parsing + add comment about t_last
* server : rename server structs
* server : allow to override FQDN in tests
ggml-ci
* server : add comments
---------
Co-authored-by: Pierrick Hymbert <pierrick.hymbert@gmail.com>
* add build support for embedded metal library
* Update Makefile
---------
Co-authored-by: Haoxiang Fei <feihaoxiang@idea.edu.cn>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama: add llama_chat_apply_template
* test-chat-template: remove dedundant vector
* chat_template: do not use std::string for buffer
* add clarification for llama_chat_apply_template
* llama_chat_apply_template: add zephyr template
* llama_chat_apply_template: correct docs
* llama_chat_apply_template: use term "chat" everywhere
* llama_chat_apply_template: change variable name to "tmpl"
* build : pass all warning flags to nvcc via -Xcompiler
* make : fix apparent mis-merge from #3952
* make : fix incorrect GF_CC_VER for CUDA host compiler
* make: add error message for bad CUDA version
* Update Makefile
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
---------
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* Fix Vulkan on Intel ARC
Optimize matmul for Intel ARC
Add Vulkan dequant test
* Add Vulkan debug and validate flags to Make and CMakeLists.txt
* Enable asynchronous transfers in Vulkan backend
* Fix flake8
* Disable Vulkan async backend functions for now
* Also add Vulkan run tests command to Makefile and CMakeLists.txt
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: add llama_server_queue struct
* server: add llama_server_response_event
* server: add comments
* server: move all mutexes away from server.cpp
* server: correct multitask response
* server: only add back deferred tasks when one slot is available
* server: fix a race condition cause by "request_completion"
* scripts : add lib.sh and lib_test.sh
* scripts : stub out new ci-run.sh script
* scripts : switch to PascalCase for functions
This looks a little odd at first, but I find it very useful as a
convention to know if a command is part of our code vs a builtin.
* scripts : add some fancy conversion from snake_case to PascalCase
* Add venv to ci/run.sh
* Revert scripts work
* scripts : add wrapper script for local use of ci/run.sh
* Simplify .gitignore for tests, clang-tidy fixes
* Label all ctest tests
* ci : ctest uses -L main
* Attempt at writing ctest_with_model
* Update test-model-load-cancel
* ci : add ctest_with_model for debug and release
ggml-ci
* Fix gg_get_model function
ggml-ci
* got stuck on CMake
* Add get_model.cpp to tests/CMakeLists.txt
ggml-ci
* Fix README.md output for ctest_with_model
ggml-ci
* workflows : use `-L main` for all ctest
ggml-ci
* Fixes
* GG_RUN_CTEST_MODELFILE => LLAMACPP_TESTMODELFILE
* Always show warning rather than failing if model file variable is not
set
* scripts : update usage text for ci-run.sh
* cuda : improve cuda pool efficiency using virtual memory
* fix mixtral
* fix cmake build
* check for vmm support, disable for hip
ggml-ci
* fix hip build
* clarify granularity
* move all caps to g_device_caps
* refactor error checking
* add cuda_pool_alloc, refactor most pool allocations
ggml-ci
* fix hip build
* CUBLAS_TF32_TENSOR_OP_MATH is not a macro
* more hip crap
* llama : fix msvc warnings
* ggml : fix msvc warnings
* minor
* minor
* cuda : fallback to CPU on host buffer alloc fail
* Update ggml-cuda.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Update ggml-cuda.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* ensure allocations are always aligned
* act_size -> actual_size
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* initial commit, going through initializations
* main loop finished, starting to debug
* BUG: generates gibberish/repeating tokens after a while
* kv_cache management
* Added colors to distinguish drafted tokens (--color). Updated README
* lookup : fix token positions in the draft batch
* lookup : use n_draft from CLI params
* lookup : final touches
---------
Co-authored-by: Leon Ericsson <leon.ericsson@icloud.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix old jetson compile error
* Update Makefile
* update jetson detect and cuda version detect
* update cuda marco define
* update makefile and cuda,fix some issue
* Update README.md
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update Makefile
* Update README.md
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : initial ggml-backend integration
* add ggml-metal
* cuda backend can be used though ggml-backend with LLAMA_GGML_BACKEND_CUDA_TEST
access all tensor data with ggml_backend_tensor_get/set
* add ggml_backend_buffer_clear
zero-init KV cache buffer
* add ggml_backend_buffer_is_hos, used to avoid copies if possible when accesing tensor data
* disable gpu backends with ngl 0
* more accurate mlock
* unmap offloaded part of the model
* use posix_fadvise64(.., POSIX_FADV_SEQUENTIAL) to improve performance with mmap
* update quantize and lora
* update session copy/set to use ggml-backend
ggml-ci
* use posix_fadvise instead of posix_fadvise64
* ggml_backend_alloc_ctx_tensors_from_buft : remove old print
* llama_mmap::align_offset : use pointers instead of references for out parameters
* restore progress_callback behavior
* move final progress_callback call to load_all_data
* cuda : fix fprintf format string (minor)
* do not offload scales
* llama_mmap : avoid unmapping the same fragments again in the destructor
* remove unnecessary unmap
* metal : add default log function that prints to stderr, cleanup code
ggml-ci
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* build : Check the ROCm installation location
* more generic approach
* fixup! It was returning the path instead of the command output
* fixup! Trailing whitespace
* convert : support Mixtral as LLAMA arch
* convert : fix n_ff typo
* llama : model loading
* ggml : sync latest ggml_mul_mat_id
* llama : update graph to support MoE
* llama : fix cur -> cur_expert
* llama : first working version
* llama : fix expert weighting in the FFN
* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)
* ggml : add n_as argument to ggml_mul_mat_id
* ggml : fix ggml_get_rows to take into account ne02 / ne11
* metal : add more general support for ggml_get_rows + tests
* llama : add basic support for offloading moe with CUDA
* metal : add/mul/div use general kernel when src1 not cont
* metal : reduce the kernel launches for ggml_mul_mat_id
* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D
* ggml : update get_rows f16 and q
* cuda : support non-contiguous src1 in get_rows
* llama : offload missing ffn_moe_silu
* metal : fix ggml_get_rows to work with non-cont src1
* metal : add indirect mat-vec kernels for all quantization types
* llama : do not quantize expert gating tensors
* llama : add n_expert and n_expert_used to hparams + change quants
* test-backend-ops : add moe test
* cuda : fix get_rows when ncols is odd
* convert : determine n_ctx correctly
* metal : fix ggml_mul_mat_id for F32
* test-backend-ops : make experts more evenly probable (test_moe)
* test-backend-ops : cleanup, add moe test for batches
* test-backend-ops : add cpy from f32 -> all types test
* test-backend-ops : fix dequantize block offset
* llama : fix hard-coded number of experts
* test-backend-ops : simplify and disable slow tests to avoid CI timeout
* test-backend-ops : disable MOE test with thread sanitizer
* cuda : fix mul_mat_id with multi gpu
* convert : use 1e6 rope_freq_base for mixtral
* convert : fix style
* convert : support safetensors format
* gguf-py : bump version
* metal : add cpy f16 -> f32 kernel
* metal : fix binary ops for ne10 % 4 != 0
* test-backend-ops : add one more sum_rows test
* ggml : do not use BLAS with ggml_mul_mat_id
* convert-hf : support for mixtral-instruct (#4428)
* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct
* convert : use sentencepiece tokenizer for Mixtral-instruct
* convert : make flake8 happy
* metal : fix soft_max kernels
ref: 1914017863
* metal : limit kernels to not use more than the allowed threads
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
* cmake : fix joining of REAL_GIT_DIR
* fix includes with help from include-what-you-use
* make : remove unneeded deps and add test-rope target
* fix C includes in C++ source files
* Revert "fix includes with help from include-what-you-use"
This reverts commit 635e9fadfd.
* build: support ppc64le build for make and CMake
* build: keep __POWER9_VECTOR__ ifdef and extend with __powerpc64__
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* wip llava python bindings compatibility
* add external llava API
* add base64 in-prompt image support
* wip refactor image loading
* refactor image load out of llava init
* cleanup
* further cleanup; move llava-cli into its own file and rename
* move base64.hpp into common/
* collapse clip and llava libraries
* move llava into its own subdir
* wip
* fix bug where base64 string was not removed from the prompt
* get libllava to output in the right place
* expose llava methods in libllama.dylib
* cleanup memory usage around clip_image_*
* cleanup and refactor *again*
* update headerdoc
* build with cmake, not tested (WIP)
* Editorconfig
* Editorconfig
* Build with make
* Build with make
* Fix cyclical depts on Windows
* attempt to fix build on Windows
* attempt to fix build on Windows
* Upd TODOs
* attempt to fix build on Windows+CUDA
* Revert changes in cmake
* Fix according to review comments
* Support building as a shared library
* address review comments
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
* cmake : fix build when .git does not exist
* cmake : simplify BUILD_INFO target
* cmake : add missing dependencies on BUILD_INFO
* build : link against build info instead of compiling against it
* zig : make build info a .cpp source instead of a header
Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com>
* cmake : revert change to CMP0115
---------
Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com>
* cuda : prints wip
* cuda : new cublas gemm branch for multi-batch quantized src0
* cuda : add F32 sgemm branch
* cuda : fine-tune >= VOLTA params + use MMQ only for small batches
* cuda : remove duplicated cuBLAS GEMM code
* cuda : add CUDA_USE_TENSOR_CORES and GGML_CUDA_FORCE_MMQ macros
* build : add compile option to force use of MMQ kernels