* ggml : add IQ2 to test-backend-ops + refactoring
ggml-ci
* cuda : update supports_op for IQ2
ggml-ci
* ci : enable LLAMA_CUBLAS=1 for CUDA nodes
ggml-ci
* cuda : fix out-of-bounds-access in `mul_mat_vec_q`
ggml-ci
* tests : avoid creating RNGs for each Q tensor
ggml-ci
* tests : avoid creating RNGs for each tensor
ggml-ci
This change makes it possible to build ggml-cuda.cu and ggml-metal.m as
independent dynamic shared objects, that may be conditionally linked at
runtime in a multiplatform binary. It introduces a GGML_CALL annotation
that documents which functions have a cyclic call relationship, between
the application code and GPU modules.
This change does nothing, unless the build defines -DGGML_MULTIPLATFORM
which causes back-references and function pointers to conform to MS ABI
which is supported by NVCC, ROCm, XCode, GCC and Clang across platforms
* llama : ggml-backend integration
* ggml-backend : add names to buffers
* fix unmap after loading
* batched-bench : add tensor_split param
* llama : check for null tensor_split
* ggml-backend : increase GGML_MAX_BACKENDS
* improve graph splitting, partial fix for --no-kv-offload
* cuda : add ggml-backend split buffer support
* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)
* ggml : fix null backend dereference (#4807)
* ggml : fix null backend dereference
* ggml : also check ggml_backend_is_cpu
* test-backend-ops : check buffer allocation failures
* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)
* ggml : fix mul_mat_id work size
* llama : rewrite session kv load/set without graphs
* minor
* llama : only initialize used backends, free backends on context free
* llama : abort ctx if cuda backend init fails
* llama : rewrite lora with ggml-backend and compute on CPU
ggml-ci
* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer
* opencl : add ggml-backend buffer type
* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)
* llama : on Metal, by default offload the full model
ggml-ci
* metal : page align the data ptr (#4854)
* Apply suggestions from code review
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* cuda : fix split buffer free
* address review comments
* llama-bench : add split-mode parameter
* fix whitespace
* opencl : fix double initialization
* server : add --split-mode parameter
* use async copy and compute to improve multi-gpu performance
ggml-ci
* use async memcpys to copy the graph outputs to the CPU
* fix opencl
* use a host buffer for the cpu compute buffer for faster copies to the gpu
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* iq2_xs: basics
* iq2_xs: this should have been in the basics
* iq2_xs: CUDA and scalar CPU works
* iq2_xs: WIP Metal
* iq2_xs: Metal now works
* iq2_xs: working, but dog slow, ARM_NEON dot product
* iq2_xs: better ARM_NEON dot product
We are now at 19.5 t/s for TG-128 and 61 t/s for PP-512 when
running on the CPU.
* iq2_xs: AVX2 dot product - 19.5 t/s
* iq2_xs: faster AVX2 dit product
21.4 t/s for TG-128, 59.2 t/s for PP-512.
The latter is 2x compared to the previous version.
* iq2_xs: had forgotten to delete iq2-data.h
* Add llama enum for IQ2_XS
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* iq2_xxs: basics
* iq2_xxs: scalar and AVX2 dot products
Needed to change Q8_K to have quants in the -127...127 range,
else the IQ2_XXS AVX implementation becomes very awkward.
The alternative would have been to use Q8_0 instead. Perhaps
I'll change later, for now this is what we have.
* iq2_xxs: ARM_NEON dot product
Somehow strangely slow (112 ms/token).
* iq2_xxs: WIP Metal
Dequantize works, something is still wrong with the
dot product.
* iq2_xxs: Metal dot product now works
We have
PP-512 = 475 t/s
TG-128 = 47.3 t/s
Not the greatest performance, but not complete garbage either.
* iq2_xxs: slighty faster dot product
TG-128 is now 48.4 t/s
* iq2_xxs: slighty faster dot product
TG-128 is now 50.9 t/s
* iq2_xxs: even faster Metal dot product
TG-128 is now 54.1 t/s.
Strangely enough, putting the signs lookup table
into shared memory has a bigger impact than the
grid values being in shared memory.
* iq2_xxs: dequantize CUDA kernel - fix conflict with master
* iq2_xxs: quantized CUDA dot product (MMVQ)
We get TG-128 = 153.1 t/s
* iq2_xxs: slightly faster CUDA dot product
TG-128 is now at 155.1 t/s.
* iq2_xxs: add to llama ftype enum
* iq2_xxs: fix MoE on Metal
* Fix missing MMQ ops when on hipBLAS
I had put the ggml_supports_mmq call at the wrong place.
* Fix bug in qequantize_row_iq2_xxs
The 0.25f factor was missing.
Great detective work by @ggerganov!
* Fixing tests
* PR suggestion
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* fixed mul-mat error for old GPUs
* style fixes
* add mul mat src1 f16 test cases, fix more cases
ggml-ci
---------
Co-authored-by: bssrdf <bssrdf@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
* cuda : fix vmm pool with multi GPU
* hip
* use recommended granularity instead of minimum
* better error checking
* fix mixtral
* use cudaMemcpy3DPeerAsync
* use cuda_pool_alloc in ggml_cuda_op_mul_mat
* consolidate error checking in ggml_cuda_set_device
* remove unnecessary inlines
ggml-ci
* style fixes
* only use vmm for the main device
* fix scratch buffer size, re-enable vmm pool for all devices
* remove unnecessary check id != g_main_device
* cuda : improve cuda pool efficiency using virtual memory
* fix mixtral
* fix cmake build
* check for vmm support, disable for hip
ggml-ci
* fix hip build
* clarify granularity
* move all caps to g_device_caps
* refactor error checking
* add cuda_pool_alloc, refactor most pool allocations
ggml-ci
* fix hip build
* CUBLAS_TF32_TENSOR_OP_MATH is not a macro
* more hip crap
* llama : fix msvc warnings
* ggml : fix msvc warnings
* minor
* minor
* cuda : fallback to CPU on host buffer alloc fail
* Update ggml-cuda.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Update ggml-cuda.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* ensure allocations are always aligned
* act_size -> actual_size
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* fix old jetson compile error
* Update Makefile
* update jetson detect and cuda version detect
* update cuda marco define
* update makefile and cuda,fix some issue
* Update README.md
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update Makefile
* Update README.md
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : initial ggml-backend integration
* add ggml-metal
* cuda backend can be used though ggml-backend with LLAMA_GGML_BACKEND_CUDA_TEST
access all tensor data with ggml_backend_tensor_get/set
* add ggml_backend_buffer_clear
zero-init KV cache buffer
* add ggml_backend_buffer_is_hos, used to avoid copies if possible when accesing tensor data
* disable gpu backends with ngl 0
* more accurate mlock
* unmap offloaded part of the model
* use posix_fadvise64(.., POSIX_FADV_SEQUENTIAL) to improve performance with mmap
* update quantize and lora
* update session copy/set to use ggml-backend
ggml-ci
* use posix_fadvise instead of posix_fadvise64
* ggml_backend_alloc_ctx_tensors_from_buft : remove old print
* llama_mmap::align_offset : use pointers instead of references for out parameters
* restore progress_callback behavior
* move final progress_callback call to load_all_data
* cuda : fix fprintf format string (minor)
* do not offload scales
* llama_mmap : avoid unmapping the same fragments again in the destructor
* remove unnecessary unmap
* metal : add default log function that prints to stderr, cleanup code
ggml-ci
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* AMD ROCm: handle UMA memory VRAM expansions
This resolves#2797 by allowing ROCm AMD GPU users with a UMA to
dynamically expand the VRAM allocated to the GPU.
Without this, AMD ROCm users with shared CPU/GPU memory usually are
stuck with the BIOS-set (or fixed) framebuffer VRAM, making it
impossible to load more than 1-2 layers.
Note that the model is duplicated in RAM because it's loaded once for
the CPU and then copied into a second set of allocations that are
managed by the HIP UMA system. We can fix this later.
* clarify build process for ROCm on linux with cmake
* avoid using deprecated ROCm hipMallocHost
* keep simplifying the change required for UMA
* cmake: enable UMA-compatible allocation when LLAMA_HIP_UMA=ON
regression of #4490
Adds defines for two new datatypes
cublasComputeType_t, cudaDataType_t.
Currently using deprecated hipblasDatatype_t since newer ones very recent.
* sync : ggml (SD ops, tests, kernels)
ggml-ci
* cuda : restore im2col
ggml-ci
* metal : fix accuracy of dequantization kernels
ggml-ci
* cuda : restore correct im2col
ggml-ci
* metal : try to fix moe test by reducing expert size
ggml-ci
* cuda : fix bin bcast when src1 and dst have different types
ggml-ci
---------
Co-authored-by: slaren <slarengh@gmail.com>
* convert : support Mixtral as LLAMA arch
* convert : fix n_ff typo
* llama : model loading
* ggml : sync latest ggml_mul_mat_id
* llama : update graph to support MoE
* llama : fix cur -> cur_expert
* llama : first working version
* llama : fix expert weighting in the FFN
* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)
* ggml : add n_as argument to ggml_mul_mat_id
* ggml : fix ggml_get_rows to take into account ne02 / ne11
* metal : add more general support for ggml_get_rows + tests
* llama : add basic support for offloading moe with CUDA
* metal : add/mul/div use general kernel when src1 not cont
* metal : reduce the kernel launches for ggml_mul_mat_id
* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D
* ggml : update get_rows f16 and q
* cuda : support non-contiguous src1 in get_rows
* llama : offload missing ffn_moe_silu
* metal : fix ggml_get_rows to work with non-cont src1
* metal : add indirect mat-vec kernels for all quantization types
* llama : do not quantize expert gating tensors
* llama : add n_expert and n_expert_used to hparams + change quants
* test-backend-ops : add moe test
* cuda : fix get_rows when ncols is odd
* convert : determine n_ctx correctly
* metal : fix ggml_mul_mat_id for F32
* test-backend-ops : make experts more evenly probable (test_moe)
* test-backend-ops : cleanup, add moe test for batches
* test-backend-ops : add cpy from f32 -> all types test
* test-backend-ops : fix dequantize block offset
* llama : fix hard-coded number of experts
* test-backend-ops : simplify and disable slow tests to avoid CI timeout
* test-backend-ops : disable MOE test with thread sanitizer
* cuda : fix mul_mat_id with multi gpu
* convert : use 1e6 rope_freq_base for mixtral
* convert : fix style
* convert : support safetensors format
* gguf-py : bump version
* metal : add cpy f16 -> f32 kernel
* metal : fix binary ops for ne10 % 4 != 0
* test-backend-ops : add one more sum_rows test
* ggml : do not use BLAS with ggml_mul_mat_id
* convert-hf : support for mixtral-instruct (#4428)
* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct
* convert : use sentencepiece tokenizer for Mixtral-instruct
* convert : make flake8 happy
* metal : fix soft_max kernels
ref: 1914017863
* metal : limit kernels to not use more than the allowed threads
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
* metal : implement soft_max_ext
* cuda : implement soft_max_ext
* ggml : implement soft_max_ext (CPU)
* batched-bench : print threads
ggml-ci
* metal : simplify soft_max encoding
ggml-ci
* cuda : use 512 threads for soft_max instead of 32
* ggml : update soft max cpu
* cuda : do warp-based block reduce
* cuda : increase max block size to 1024
* cuda : fix warp reduction initialization of shared mem
* metal : warp-based reduction for soft max kernel
* metal : warp-based reduce for rms_norm
* metal : simplify soft max kernel
ggml-ci
* alloc : fix build with debug