mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 19:34:35 +00:00
04976db7a8
* fix typo * fix typos * fix typo * fix typos * fix typo * fix typos
102 lines
4.4 KiB
Markdown
102 lines
4.4 KiB
Markdown
# GBNF Guide
|
|
|
|
GBNF (GGML BNF) is a format for defining [formal grammars](https://en.wikipedia.org/wiki/Formal_grammar) to constrain model outputs in `llama.cpp`. For example, you can use it to force the model to generate valid JSON, or speak only in emojis. GBNF grammars are supported in various ways in `examples/main` and `examples/server`.
|
|
|
|
## Background
|
|
|
|
[Bakus-Naur Form (BNF)](https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form) is a notation for describing the syntax of formal languages like programming languages, file formats, and protocols. GBNF is an extension of BNF that primarily adds a few modern regex-like features.
|
|
|
|
## Basics
|
|
|
|
In GBNF, we define *production rules* that specify how a *non-terminal* (rule name) can be replaced with sequences of *terminals* (characters, specifically Unicode [code points](https://en.wikipedia.org/wiki/Code_point)) and other non-terminals. The basic format of a production rule is `nonterminal ::= sequence...`.
|
|
|
|
## Example
|
|
|
|
Before going deeper, let's look at some of the features demonstrated in `grammars/chess.gbnf`, a small chess notation grammar:
|
|
```
|
|
# `root` specifies the pattern for the overall output
|
|
root ::= (
|
|
# it must start with the characters "1. " followed by a sequence
|
|
# of characters that match the `move` rule, followed by a space, followed
|
|
# by another move, and then a newline
|
|
"1. " move " " move "\n"
|
|
|
|
# it's followed by one or more subsequent moves, numbered with one or two digits
|
|
([1-9] [0-9]? ". " move " " move "\n")+
|
|
)
|
|
|
|
# `move` is an abstract representation, which can be a pawn, nonpawn, or castle.
|
|
# The `[+#]?` denotes the possibility of checking or mate signs after moves
|
|
move ::= (pawn | nonpawn | castle) [+#]?
|
|
|
|
pawn ::= ...
|
|
nonpawn ::= ...
|
|
castle ::= ...
|
|
```
|
|
|
|
## Non-Terminals and Terminals
|
|
|
|
Non-terminal symbols (rule names) stand for a pattern of terminals and other non-terminals. They are required to be a dashed lowercase word, like `move`, `castle`, or `check-mate`.
|
|
|
|
Terminals are actual characters ([code points](https://en.wikipedia.org/wiki/Code_point)). They can be specified as a sequence like `"1"` or `"O-O"` or as ranges like `[1-9]` or `[NBKQR]`.
|
|
|
|
## Characters and character ranges
|
|
|
|
Terminals support the full range of Unicode. Unicode characters can be specified directly in the grammar, for example `hiragana ::= [ぁ-ゟ]`, or with escapes: 8-bit (`\xXX`), 16-bit (`\uXXXX`) or 32-bit (`\UXXXXXXXX`).
|
|
|
|
Character ranges can be negated with `^`:
|
|
```
|
|
single-line ::= [^\n]+ "\n"`
|
|
```
|
|
|
|
## Sequences and Alternatives
|
|
|
|
The order of symbols in a sequence matters. For example, in `"1. " move " " move "\n"`, the `"1. "` must come before the first `move`, etc.
|
|
|
|
Alternatives, denoted by `|`, give different sequences that are acceptable. For example, in `move ::= pawn | nonpawn | castle`, `move` can be a `pawn` move, a `nonpawn` move, or a `castle`.
|
|
|
|
Parentheses `()` can be used to group sequences, which allows for embedding alternatives in a larger rule or applying repetition and optional symbols (below) to a sequence.
|
|
|
|
## Repetition and Optional Symbols
|
|
|
|
- `*` after a symbol or sequence means that it can be repeated zero or more times.
|
|
- `+` denotes that the symbol or sequence should appear one or more times.
|
|
- `?` makes the preceding symbol or sequence optional.
|
|
|
|
## Comments and newlines
|
|
|
|
Comments can be specified with `#`:
|
|
```
|
|
# defines optional whitespace
|
|
ws ::= [ \t\n]+
|
|
```
|
|
|
|
Newlines are allowed between rules and between symbols or sequences nested inside parentheses. Additionally, a newline after an alternate marker `|` will continue the current rule, even outside of parentheses.
|
|
|
|
## The root rule
|
|
|
|
In a full grammar, the `root` rule always defines the starting point of the grammar. In other words, it specifies what the entire output must match.
|
|
|
|
```
|
|
# a grammar for lists
|
|
root ::= ("- " item)+
|
|
item ::= [^\n]+ "\n"
|
|
```
|
|
|
|
## Next steps
|
|
|
|
This guide provides a brief overview. Check out the GBNF files in this directory (`grammars/`) for examples of full grammars. You can try them out with:
|
|
```
|
|
./main -m <model> --grammar-file grammars/some-grammar.gbnf -p 'Some prompt'
|
|
```
|
|
|
|
## Troubleshooting
|
|
|
|
Grammars currently have performance gotchas (see https://github.com/ggerganov/llama.cpp/issues/4218).
|
|
|
|
### Efficient optional repetitions
|
|
|
|
A common pattern is to allow repetitions of a pattern `x` up to N times.
|
|
|
|
While semantically correct, the syntax `x? x? x?.... x?` (with N repetitions) will result in extremely slow inference. Instead, you can write `(x (x (x ... (x)?...)?)?)?` (w/ N-deep nesting)
|