mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-11 21:39:52 +00:00
4.3 KiB
4.3 KiB
AWQ: Activation-aware Weight Quantization for LLM - version apply to llamacpp
[Paper][Original Repo][Easy-to-use Repo]
Supported models:
- LLaMA
- LLaMA 2
- MPT
- Mistral AI v0.1
- Bloom
- Mixtral MoE
TODO:
- Update version work with both MPT and MPT-AWQ model
- Add OPT model
- Add Bloom model
- Add Mixtral MoE
- Support w3, w2
Contents
Install
Install requirements
pip install -r requirements.txt
Get the pre-computed AWQ search results for multiple model families, including LLaMA, LLaMA2, MPT, OPT
git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache
Convert
Example for llama model
# For llama7b and llama2 models
python convert.py models/llama-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/llama_7b_fp16.gguf
# For mistral and mpt models
python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/mpt-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf
Quantize
# We only benchmark and confirm the results on q4_0, q4_1, and q2_k types.
./quantize models/llama_7b_fp16.gguf models/llama_7b_q4_0.gguf q4_0
Test
# For all models.
./build/bin/main -m models/llama_7b_q4_0.gguf -n 128 --prompt "Once upon a time"
Benchmark
The perplexity measurements in table above are done against the wikitext2
test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
# For llama and llama2, and mistral models.
./perplexity -m models/llama_7b_q4_0.gguf -f datasets/wikitext-2-raw/wiki.test.raw
Results
Results are run on OpenBLAS (CPU) and CuBLAS (GPU) for fair comparison We use three types of llamacpp quantization methods to work with our version, including q4_0, q4_1, and q2_k
Llama 7B (Build with OpenBLAS)
Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
---|---|---|---|---|---|
Llama 7B | perplexity | 5.9066 | 6.1214 | 6.0643 | 6.5808 |
Llama 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
Llama 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
AWQ-LLama 7B | perplexity | 5.9175 | 6.0252 | 5.9987 | 6.3692 |
AWQ-LLama 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
AWQ-LLama 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
Llama2 7B (Build with CuBLAS)
Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
---|---|---|---|---|---|
Llama2 7B | perplexity | 5.8664 | 6.0260 | 6.0656 | 6.4496 |
Llama2 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
Llama2 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
AWQ-LLama2 7B | perplexity | 5.8801 | 6.0054 | 5.9849 | 6.3650 |
AWQ-LLama2 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
AWQ-LLama2 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
Mistral 7B v0.1 (Build with CuBLAS)
Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
---|---|---|---|---|---|
Mistral 7B | perplexity | 5.6931 | 5.8202 | 5.8268 | 6.1645 |
Mistral 7B | file size | 14.5G | 4.1G | 4.5G | 3.1G |
Mistral 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
AWQ-Mistral 7B | perplexity | 5.6934 | 5.8020 | 5.7691 | 6.0426 |
AWQ-Mistral 7B | file size | 14.5G | 4.1G | 4.5G | 3.1G |
AWQ-Mistral 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
MPT 7B (Build with OpenBLAS)
Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
---|---|---|---|---|---|
MPT 7B | perplexity | 8.4369 | 8.7956 | 8.6265 | 11.4913 |
MPT 7B | file size | 13.7G | 3.9G | 4.3G | 2.8G |
MPT 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
AWQ-MPT 7B | perplexity | 8.4944 | 8.7053 | 8.6750 | 10.2873 |
AWQ-MPT 7B | file size | 13.7G | 3.9G | 4.3G | 2.8G |
AWQ-MPT 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |