mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 03:44:35 +00:00
f6793491b5
* update: awq support llama-7b model * update: change order * update: benchmark results for llama2-7b * update: mistral 7b v1 benchmark * update: support 4 models * fix: Readme * update: ready for PR * update: readme * fix: readme * update: change order import * black * format code * update: work for bot mpt and awqmpt * update: readme * Rename to llm_build_ffn_mpt_awq * Formatted other files * Fixed params count * fix: remove code * update: more detail for mpt * fix: readme * fix: readme * update: change folder architecture * fix: common.cpp * fix: readme * fix: remove ggml_repeat * update: cicd * update: cicd * uppdate: remove use_awq arg * update: readme * llama : adapt plamo to new ffn ggml-ci --------- Co-authored-by: Trần Đức Nam <v.namtd12@vinai.io> Co-authored-by: Le Hoang Anh <v.anhlh33@vinai.io> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
117 lines
4.3 KiB
Markdown
117 lines
4.3 KiB
Markdown
# AWQ: Activation-aware Weight Quantization for LLM - version apply to llamacpp
|
|
[[Paper](https://arxiv.org/abs/2306.00978)][[Original Repo](https://github.com/mit-han-lab/llm-awq)][[Easy-to-use Repo](https://github.com/casper-hansen/AutoAWQ)]
|
|
|
|
**Supported models:**
|
|
|
|
- [X] LLaMA
|
|
- [x] LLaMA 2
|
|
- [X] MPT
|
|
- [X] Mistral AI v0.1
|
|
- [ ] Bloom
|
|
- [ ] Mixtral MoE
|
|
|
|
**TODO:**
|
|
- [x] Update version work with both MPT and MPT-AWQ model
|
|
- [ ] Add OPT model
|
|
- [ ] Add Bloom model
|
|
- [ ] Add Mixtral MoE
|
|
- [ ] Support w3, w2
|
|
|
|
|
|
## Contents
|
|
|
|
- [Install](##Install)
|
|
- [Convert](##Convert)
|
|
- [Quantize](##Quantize)
|
|
- [Test](##Test)
|
|
- [Benchmark](##Benchmark)
|
|
- [Results](##Results)
|
|
|
|
## Install
|
|
Install requirements
|
|
```bash
|
|
pip install -r requirements.txt
|
|
```
|
|
Get the pre-computed AWQ search results for multiple model families, including LLaMA, LLaMA2, MPT, OPT
|
|
```bash
|
|
git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache
|
|
```
|
|
|
|
## Convert
|
|
Example for llama model
|
|
```bash
|
|
# For llama7b and llama2 models
|
|
python convert.py models/llama-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/llama_7b_fp16.gguf
|
|
# For mistral and mpt models
|
|
python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf
|
|
```
|
|
|
|
## Quantize
|
|
```bash
|
|
# We only benchmark and confirm the results on q4_0, q4_1, and q2_k types.
|
|
./quantize models/llama_7b_fp16.gguf models/llama_7b_q4_0.gguf q4_0
|
|
```
|
|
|
|
## Test
|
|
```bash
|
|
# For all models.
|
|
./build/bin/main -m models/llama_7b_q4_0.gguf -n 128 --prompt "Once upon a time"
|
|
```
|
|
|
|
## Benchmark
|
|
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
|
|
```bash
|
|
# For llama and llama2, and mistral models.
|
|
./perplexity -m models/llama_7b_q4_0.gguf -f datasets/wikitext-2-raw/wiki.test.raw
|
|
```
|
|
|
|
## Results
|
|
Results are run on OpenBLAS (CPU) and CuBLAS (GPU) for fair comparison
|
|
We use three types of llamacpp quantization methods to work with our version, including q4_0, q4_1, and q2_k
|
|
|
|
### Llama 7B (Build with OpenBLAS)
|
|
|
|
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
|
|-----------:|--------------|-------:|-------:|-------:|-------:|
|
|
|Llama 7B | perplexity | 5.9066 | 6.1214 | 6.0643 | 6.5808 |
|
|
|Llama 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
|
|Llama 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
|
|AWQ-LLama 7B| perplexity | 5.9175 | 6.0252 | 5.9987 | 6.3692 |
|
|
|AWQ-LLama 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
|
|AWQ-LLama 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
|
|
|
|
|
### Llama2 7B (Build with CuBLAS)
|
|
|
|
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
|
|------------:|--------------|-------:|-------:|-------:|-------:|
|
|
|Llama2 7B | perplexity | 5.8664 | 6.0260 | 6.0656 | 6.4496 |
|
|
|Llama2 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
|
|Llama2 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
|
|AWQ-LLama2 7B| perplexity | 5.8801 | 6.0054 | 5.9849 | 6.3650 |
|
|
|AWQ-LLama2 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
|
|AWQ-LLama2 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
|
|
|
|
|
### Mistral 7B v0.1 (Build with CuBLAS)
|
|
|
|
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
|
|-------------:|--------------|-------:|-------:|-------:|-------:|
|
|
|Mistral 7B | perplexity | 5.6931 | 5.8202 | 5.8268 | 6.1645 |
|
|
|Mistral 7B | file size | 14.5G | 4.1G | 4.5G | 3.1G |
|
|
|Mistral 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
|
|AWQ-Mistral 7B| perplexity | 5.6934 | 5.8020 | 5.7691 | 6.0426 |
|
|
|AWQ-Mistral 7B| file size | 14.5G | 4.1G | 4.5G | 3.1G |
|
|
|AWQ-Mistral 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
|
|
|
### MPT 7B (Build with OpenBLAS)
|
|
|
|
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
|
|---------:|--------------|-------:|-------:|-------:|--------:|
|
|
|MPT 7B | perplexity | 8.4369 | 8.7956 | 8.6265 | 11.4913 |
|
|
|MPT 7B | file size | 13.7G | 3.9G | 4.3G | 2.8G |
|
|
|MPT 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
|
|AWQ-MPT 7B| perplexity | 8.4944 | 8.7053 | 8.6750 | 10.2873|
|
|
|AWQ-MPT 7B| file size | 13.7G | 3.9G | 4.3G | 2.8G |
|
|
|AWQ-MPT 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|