2025-01-07 17:01:58 +00:00
# include "ggml.h"
# include "gguf.h"
2024-09-09 21:36:09 +00:00
# include "arg.h"
2024-06-15 16:53:40 +00:00
# include "common.h"
# include "llama.h"
# include "pca.hpp"
2024-06-25 11:59:54 +00:00
# include "mean.hpp"
2024-06-15 16:53:40 +00:00
# ifdef GGML_USE_CUDA
# include "ggml-cuda.h"
# endif
# ifdef GGML_USE_METAL
# include "ggml-metal.h"
# endif
2024-09-15 17:46:12 +00:00
# include <algorithm>
# include <climits>
2024-06-15 16:53:40 +00:00
# include <cstdio>
2024-09-15 17:46:12 +00:00
# include <cstring>
# include <fstream>
# include <iostream>
2024-06-15 16:53:40 +00:00
# include <string>
# include <tuple>
# include <vector>
//////////////////////////////////////////////////
// utils
template < class Iter >
static std : : string tokens_to_str ( llama_context * ctx , Iter begin , Iter end ) {
std : : string ret ;
for ( ; begin ! = end ; + + begin ) {
2024-10-10 20:57:42 +00:00
ret + = common_token_to_piece ( ctx , * begin ) ;
2024-06-15 16:53:40 +00:00
}
return ret ;
}
2024-09-07 18:43:51 +00:00
static void print_usage ( int , char * * argv ) {
2024-06-15 16:53:40 +00:00
printf ( " \n example usage: \n " ) ;
2024-06-25 11:59:54 +00:00
printf ( " \n CPU only: %s -m ./llama-3.Q4_K_M.gguf \n " , argv [ 0 ] ) ;
printf ( " \n with GPU: %s -m ./llama-3.Q4_K_M.gguf -ngl 99 \n " , argv [ 0 ] ) ;
printf ( " \n advanced: %s -m ./llama-3.Q4_K_M.gguf -ngl 99 --pca-iter 2000 --pca-batch 100 \n " , argv [ 0 ] ) ;
printf ( " \n using mean: %s -m ./llama-3.Q4_K_M.gguf --method mean \n " , argv [ 0 ] ) ;
2024-06-15 16:53:40 +00:00
printf ( " \n " ) ;
}
//////////////////////////////////////////////////
// cb_eval is reused for each pair of positive - negative prompt
struct callback_data {
ggml_context * ctx_ggml = nullptr ; // holds v_pos, v_neg, v_diff_filtered
int n_layers = 0 ;
int n_tokens = 0 ;
bool is_eval_pos = true ;
// each element of the vector correspond to one layer
std : : vector < struct ggml_tensor * > v_pos ; // vector of matrices of size [n_embd, n_tokens]
std : : vector < struct ggml_tensor * > v_neg ; // vector of matrices of size [n_embd, n_tokens]
std : : vector < struct ggml_tensor * > v_diff_filtered ; // vector of matrices of size [n_embd, n_nonzero_rows]. NOTE: n_nonzero_rows maybe different for each layer
// save a tensor into either v_pos or v_neg (decided by is_eval_pos)
void save_tensor_for_layer ( struct ggml_tensor * t ) {
GGML_ASSERT ( t - > type = = GGML_TYPE_F32 ) ;
if ( ctx_ggml = = nullptr ) {
// alloc a new ctx_ggml if needed
struct ggml_init_params params_ggml = {
/*.mem_size =*/ ggml_tensor_overhead ( ) * n_layers * 3u ,
/*.mem_buffer =*/ NULL ,
/*.no_alloc =*/ true ,
} ;
ctx_ggml = ggml_init ( params_ggml ) ;
}
// copy tensor data
auto n_bytes = ggml_nbytes ( t ) ;
struct ggml_tensor * t_layer = ggml_new_tensor_2d ( ctx_ggml , t - > type , t - > ne [ 0 ] , t - > ne [ 1 ] ) ;
t_layer - > data = malloc ( n_bytes ) ; // TODO @ngxson : get rid of this malloc somehow
ggml_backend_tensor_get ( t , t_layer - > data , 0 , n_bytes ) ;
ggml_set_name ( t_layer , ggml_get_name ( t ) ) ;
//print_debug_tensor(t_layer);
if ( is_eval_pos ) {
v_pos . push_back ( t_layer ) ;
} else {
v_neg . push_back ( t_layer ) ;
}
}
// calculate diff (v_pos - v_neg) and place the result back to v_pos
// all zero rows in the diff tensor will also be removed
// NOTE: final layer is ignored. we only have (n_layers - 1) to process
std : : vector < struct ggml_tensor * > calc_diff ( ) {
for ( float il = 0 ; il < v_pos . size ( ) ; il + + ) {
float * a = ( float * ) v_pos [ il ] - > data ;
float * b = ( float * ) v_neg [ il ] - > data ;
size_t n_elem = ggml_nelements ( v_pos [ il ] ) ;
for ( size_t j = 0 ; j < n_elem ; j + + ) {
a [ j ] - = b [ j ] ;
}
//print_debug_tensor(v_pos[i]);
auto diff_filtered = filter_nonzero_rows ( v_pos [ il ] ) ;
v_diff_filtered . push_back ( diff_filtered ) ;
}
return v_diff_filtered ; // for convinient, we return the result std::vector
}
// delete zero rows from a given 2D tensor
struct ggml_tensor * filter_nonzero_rows ( struct ggml_tensor * a ) {
//printf("filter_nonzero_rows\n");
auto is_row_all_zeros = [ ] ( struct ggml_tensor * t , int row , float eps ) - > bool {
// check if given row containing all zero elements
int n_cols = t - > ne [ 0 ] ; // hint: should be equal to n_embd
for ( int col = 0 ; col < n_cols ; + + col ) {
if ( ggml_get_f32_nd ( t , col , row , 0 , 0 ) > eps ) {
return false ;
}
}
return true ;
} ;
std : : vector < int > rows_to_copy ; // the idx of non-zero cols (to be copied to row of diff_filtered)
for ( int i_row = 0 ; i_row < a - > ne [ 1 ] ; i_row + + ) {
if ( ! is_row_all_zeros ( a , i_row , 1e-6 ) ) {
rows_to_copy . push_back ( i_row ) ;
}
}
// get "n_nonzero_rows" for the output "diff_filtered"
int n_nonzero_rows = rows_to_copy . size ( ) ;
//printf("n_nonzero_rows: %d\n", n_nonzero_rows);
int n_embd = a - > ne [ 0 ] ;
GGML_ASSERT ( n_nonzero_rows > 0 ) ;
// diff_filtered: [n_embd, n_nonzero_rows]
struct ggml_tensor * diff_filtered = ggml_new_tensor_2d (
ctx_ggml , GGML_TYPE_F32 , n_embd , n_nonzero_rows ) ;
ggml_format_name ( diff_filtered , " diff_filtered_%s " , a - > name ) ;
diff_filtered - > data = malloc ( ggml_nbytes ( diff_filtered ) ) ;
// copy non-zero rows
for ( int dest_row = 0 ; dest_row < n_nonzero_rows ; dest_row + + ) {
int src_row = rows_to_copy [ dest_row ] ;
for ( int i = 0 ; i < n_embd ; i + + ) {
float src_elem = ggml_get_f32_nd ( a , i , src_row , 0 , 0 ) ;
ggml_set_f32_nd ( diff_filtered , i , dest_row , 0 , 0 , src_elem ) ;
}
}
//print_debug_tensor(diff_filtered);
return diff_filtered ;
}
// we don't implement destructor, because we want to reuse callback_data. we just want to free the tensors
void reset ( ) {
for ( auto ptr : v_pos ) free ( ptr - > data ) ;
for ( auto ptr : v_neg ) free ( ptr - > data ) ;
for ( auto ptr : v_diff_filtered ) free ( ptr - > data ) ;
v_pos . clear ( ) ;
v_neg . clear ( ) ;
v_diff_filtered . clear ( ) ;
if ( ctx_ggml ) {
ggml_free ( ctx_ggml ) ;
}
ctx_ggml = nullptr ;
}
} ;
/**
* process_ctx is used to store the ggml context for pre - post processing the diff vectors
* in short , input = > v_diff and output = > v_final
*/
struct train_context {
ggml_context * ctx_ggml ;
int n_embd ;
int n_layers ;
/* pair of prompts to be used for generating final vector */
std : : vector < std : : string > positive_entries ;
std : : vector < std : : string > negative_entries ;
// each element of the vector correspond to one layer
// NOTE: the last layer is discard. therefore, we will have (n_layers - 1) elements here
// NOTE (2): v_diff is transposed from v_diff_tmp
std : : vector < struct ggml_tensor * > v_diff ; // vector of matrices of size [m, n_embd] where m ~ n_tokens * n_completions (v_diff contains no zero-rows)
std : : vector < struct ggml_tensor * > v_final ; // vector of vectors of size [n_embd] to be written to file
// to easily re-alloc when concat v_diff, we temporary store v_diff in a vector instead of a tensor
// v_diff_tmp will get converted unto v_diff later on
std : : vector < std : : vector < uint8_t > > v_diff_tmp ;
train_context ( int n_embd_ , int n_layers_ ) {
n_embd = n_embd_ ;
n_layers = n_layers_ ;
struct ggml_init_params params_ggml = {
/*.mem_size =*/ ggml_tensor_overhead ( ) * ( n_layers - 1 ) * 2u ,
/*.mem_buffer =*/ NULL ,
/*.no_alloc =*/ true ,
} ;
ctx_ggml = ggml_init ( params_ggml ) ;
for ( int il = 0 ; il < n_layers - 1 ; il + + ) {
std : : vector < uint8_t > empty ;
v_diff_tmp . push_back ( empty ) ;
auto t = ggml_new_tensor_1d ( ctx_ggml , GGML_TYPE_F32 , n_embd ) ;
t - > data = malloc ( ggml_nbytes ( t ) ) ; // TODO: get rid of malloc if possible
v_final . push_back ( t ) ;
}
}
// add new rows into existing tensor in v_diff_tmp
void concat_diff_tmp ( const std : : vector < struct ggml_tensor * > & diff_filtered ) {
GGML_ASSERT ( ( int ) diff_filtered . size ( ) = = n_layers - 1 ) ;
for ( int il = 0 ; il < n_layers - 1 ; il + + ) {
auto t = diff_filtered [ il ] ;
auto & diff_tmp = v_diff_tmp [ il ] ;
size_t curr_size = diff_tmp . size ( ) ;
diff_tmp . resize ( curr_size + ggml_nbytes ( t ) ) ;
memcpy ( diff_tmp . data ( ) + curr_size , t - > data , ggml_nbytes ( t ) ) ;
}
}
// build the v_diff tensors from v_diff_tmp (v_diff need to be transposed)
// TODO @ngxson : maybe add option NOT to transpose v_diff; will be useful for "mean" method
2024-06-25 11:59:54 +00:00
void build_v_diff ( bool transpose ) {
2024-06-15 16:53:40 +00:00
printf ( " build_v_diff \n " ) ;
for ( int il = 0 ; il < n_layers - 1 ; il + + ) {
auto & diff_tmp = v_diff_tmp [ il ] ;
int n_elem = diff_tmp . size ( ) / sizeof ( float ) ;
GGML_ASSERT ( n_elem % n_embd = = 0 ) ;
int n_rows = n_elem / n_embd ;
2024-06-25 11:59:54 +00:00
struct ggml_tensor * diff = transpose
? ggml_new_tensor_2d ( ctx_ggml , GGML_TYPE_F32 , n_rows , n_embd )
: ggml_new_tensor_2d ( ctx_ggml , GGML_TYPE_F32 , n_embd , n_rows ) ;
2024-06-15 16:53:40 +00:00
ggml_set_name ( diff , ( std : : string ( " diff_ " ) + std : : to_string ( il ) ) . c_str ( ) ) ;
diff - > data = malloc ( ggml_nbytes ( diff ) ) ; // TODO: get rid of this malloc if possible
2024-06-25 11:59:54 +00:00
if ( transpose ) {
// copy data & transpose
float * arr = ( float * ) diff_tmp . data ( ) ;
for ( int ir = 0 ; ir < n_rows ; + + ir ) {
for ( int ic = 0 ; ic < n_embd ; + + ic ) {
float f = arr [ ir * n_embd + ic ] ;
ggml_set_f32_nd ( diff , ir , ic , 0 , 0 , f ) ;
}
2024-06-15 16:53:40 +00:00
}
2024-06-25 11:59:54 +00:00
} else {
// only copy
memcpy ( diff - > data , diff_tmp . data ( ) , ggml_nbytes ( diff ) ) ;
2024-06-15 16:53:40 +00:00
}
v_diff . push_back ( diff ) ;
print_debug_tensor ( diff ) ;
// free memory of diff_tmp
diff_tmp . resize ( 0 ) ;
}
}
~ train_context ( ) {
for ( auto ptr : v_final ) free ( ptr - > data ) ;
for ( auto ptr : v_diff ) free ( ptr - > data ) ;
// no need to free v_diff_tmp, since we didn't use malloc
ggml_free ( ctx_ggml ) ;
}
} ;
struct tokenized_prompt {
std : : vector < llama_token > tokens_pos ;
std : : vector < llama_token > tokens_neg ;
size_t max_seq_len ;
tokenized_prompt ( llama_context * ctx , std : : string pos , std : : string neg ) {
2024-08-15 07:23:23 +00:00
const bool add_bos = llama_add_bos_token ( llama_get_model ( ctx ) ) ;
2024-10-10 20:57:42 +00:00
tokens_pos = common_tokenize ( ctx , pos , add_bos , true ) ;
tokens_neg = common_tokenize ( ctx , neg , add_bos , true ) ;
2024-06-15 16:53:40 +00:00
max_seq_len = std : : max ( tokens_pos . size ( ) , tokens_neg . size ( ) ) ;
padding_seq ( ctx , tokens_pos , max_seq_len ) ;
padding_seq ( ctx , tokens_neg , max_seq_len ) ;
}
void padding_seq ( llama_context * ctx , std : : vector < llama_token > & tokens , size_t len ) {
// TODO: customize padding token
2024-10-10 20:57:42 +00:00
std : : vector < llama_token > pad_tokens = common_tokenize ( ctx , " " , false ) ;
2024-06-15 16:53:40 +00:00
llama_token pad_tok = pad_tokens . back ( ) ;
while ( tokens . size ( ) < len ) {
tokens . push_back ( pad_tok ) ;
}
}
} ;
//////////////////////////////////////////////////
template < typename T >
static std : : string to_string ( const T & val ) {
std : : stringstream ss ;
ss < < val ;
return ss . str ( ) ;
}
static std : : vector < std : : string > ctrlvec_load_prompt_file ( std : : string path , bool skip_empty_lines ) {
std : : vector < std : : string > output ;
std : : ifstream file ( path ) ;
if ( ! file . is_open ( ) ) {
fprintf ( stderr , " error: unable to open file: %s \n " , path . c_str ( ) ) ;
exit ( 1 ) ;
}
std : : string line ;
while ( std : : getline ( file , line ) ) {
bool is_skip = skip_empty_lines & & line . empty ( ) ;
if ( ! is_skip ) {
string_process_escapes ( line ) ;
output . push_back ( line ) ;
}
}
file . close ( ) ;
return output ;
}
//////////////////////////////////////////////////
static bool cb_eval ( struct ggml_tensor * t , bool ask , void * user_data ) {
auto * cb_data = ( callback_data * ) user_data ;
static const char * l_out_name = " l_out " ;
const bool is_l_out = strncmp ( t - > name , l_out_name , strlen ( l_out_name ) ) = = 0 ;
if ( ask ) {
return is_l_out ;
}
if ( ! is_l_out | | t - > ne [ 1 ] ! = cb_data - > n_tokens ) {
return true ;
}
// save the tensor to current context
cb_data - > save_tensor_for_layer ( t ) ;
return true ;
}
static bool get_hidden_layers ( llama_context * ctx , std : : vector < llama_token > & tokens ) {
llama_kv_cache_clear ( ctx ) ;
2024-10-18 21:18:01 +00:00
if ( llama_decode ( ctx , llama_batch_get_one ( tokens . data ( ) , tokens . size ( ) ) ) ) {
2024-06-15 16:53:40 +00:00
fprintf ( stderr , " %s : failed to eval \n " , __func__ ) ;
return false ;
}
return true ;
}
static void export_gguf ( const std : : vector < struct ggml_tensor * > & v_ctrl , const std : : string fname , const std : : string model_hint ) {
struct gguf_context * ctx = gguf_init_empty ( ) ;
const std : : string arch = " controlvector " ;
gguf_set_val_str ( ctx , " general.architecture " , arch . c_str ( ) ) ;
gguf_set_val_str ( ctx , ( arch + " .model_hint " ) . c_str ( ) , model_hint . c_str ( ) ) ;
gguf_set_val_i32 ( ctx , ( arch + " .layer_count " ) . c_str ( ) , v_ctrl . size ( ) ) ;
for ( size_t i = 0 ; i < v_ctrl . size ( ) ; + + i ) {
gguf_add_tensor ( ctx , v_ctrl [ i ] ) ;
print_debug_tensor ( v_ctrl [ i ] ) ;
printf ( " Added tensor: %s \n " , v_ctrl [ i ] - > name ) ;
}
printf ( " %s: writing file... \n " , __func__ ) ;
gguf_write_to_file ( ctx , fname . c_str ( ) , false ) ;
printf ( " %s: wrote file '%s' \n " , __func__ , fname . c_str ( ) ) ;
gguf_free ( ctx ) ;
}
/**
* Load prompt files and completion file .
* Then format each pair of prompt + completion to make an entry .
*/
2024-10-10 20:57:42 +00:00
static int prepare_entries ( common_params & params , train_context & ctx_train ) {
2024-06-15 16:53:40 +00:00
// load prompts
std : : vector < std : : string > positive_prompts = ctrlvec_load_prompt_file ( params . cvector_positive_file , true ) ;
std : : vector < std : : string > negative_prompts = ctrlvec_load_prompt_file ( params . cvector_negative_file , true ) ;
if ( positive_prompts . size ( ) ! = negative_prompts . size ( ) ) {
fprintf ( stderr , " number of positive and negative prompts must be equal \n " ) ;
return 1 ;
}
if ( positive_prompts . empty ( ) ) {
fprintf ( stderr , " must provide at least one prompt pair \n " ) ;
return 1 ;
}
2024-06-25 11:59:54 +00:00
ctx_train . positive_entries = positive_prompts ;
ctx_train . negative_entries = negative_prompts ;
2024-06-15 16:53:40 +00:00
return 0 ;
}
int main ( int argc , char * * argv ) {
2024-10-10 20:57:42 +00:00
common_params params ;
2024-06-15 16:53:40 +00:00
2024-10-10 20:57:42 +00:00
if ( ! common_params_parse ( argc , argv , params , LLAMA_EXAMPLE_CVECTOR_GENERATOR , print_usage ) ) {
2024-06-15 16:53:40 +00:00
return 1 ;
}
if ( params . n_pca_iterations % params . n_pca_batch ! = 0 ) {
fprintf ( stderr , " PCA iterations must by multiply of PCA batch size \n " ) ;
return 1 ;
}
callback_data cb_data ;
// pass the callback to the backend scheduler
// it will be executed for each node during the graph computation
params . cb_eval = cb_eval ;
params . cb_eval_user_data = & cb_data ;
params . warmup = false ;
print_build_info ( ) ;
llama_backend_init ( ) ;
llama_numa_init ( params . numa ) ;
// load the model to get hparams
2024-10-10 20:57:42 +00:00
common_init_result llama_init = common_init_from_params ( params ) ;
2024-08-05 16:14:10 +00:00
2025-01-03 08:18:53 +00:00
llama_model * model = llama_init . model . get ( ) ;
llama_context * ctx = llama_init . context . get ( ) ;
2024-06-15 16:53:40 +00:00
// int n_ctx = llama_n_ctx(ctx);
int n_layers = llama_n_layer ( model ) ;
int n_embd = llama_n_embd ( model ) ;
2025-01-03 08:18:53 +00:00
2024-06-15 16:53:40 +00:00
// get model hint param (a.k.a model arch name)
char model_hint [ 128 ] ;
llama_model_meta_val_str ( model , " general.architecture " , model_hint , 128 ) ;
// init train_context
train_context ctx_train ( n_embd , n_layers ) ;
// load and prepare entries for training
prepare_entries ( params , ctx_train ) ;
// we have to pretokenize everything because otherwise we don't know how much overhead to allocate ctx_diffs_wrapped
std : : vector < tokenized_prompt > tokenized_prompts ;
size_t n_total_tokens = 0 ;
for ( size_t i = 0 ; i < ctx_train . positive_entries . size ( ) ; + + i ) {
tokenized_prompt t ( ctx , ctx_train . positive_entries [ i ] , ctx_train . negative_entries [ i ] ) ;
n_total_tokens + = 2 * t . max_seq_len ;
tokenized_prompts . push_back ( std : : move ( t ) ) ;
}
std : : cout < < " n_total_tokens: " < < n_total_tokens < < std : : endl ;
for ( size_t i = 0 ; i < ctx_train . positive_entries . size ( ) ; + + i ) {
bool success = false ;
tokenized_prompt t = tokenized_prompts [ i ] ;
cb_data . n_layers = n_layers ;
cb_data . n_tokens = t . max_seq_len ;
printf ( " Evaluating prompt[%d/%d]: \" %s \" - \" %s \" (%d tokens) \n " ,
( int ) i + 1 , ( int ) ctx_train . positive_entries . size ( ) ,
tokens_to_str ( ctx , t . tokens_pos . cbegin ( ) , t . tokens_pos . cend ( ) ) . c_str ( ) ,
tokens_to_str ( ctx , t . tokens_neg . cbegin ( ) , t . tokens_neg . cend ( ) ) . c_str ( ) ,
( int ) t . max_seq_len ) ;
cb_data . is_eval_pos = true ;
success = get_hidden_layers ( ctx , t . tokens_pos ) ;
if ( ! success ) break ;
cb_data . is_eval_pos = false ;
success = get_hidden_layers ( ctx , t . tokens_neg ) ;
if ( ! success ) break ;
// calculate diff and remove all zero rows
auto v_diff_filtered = cb_data . calc_diff ( ) ;
// save & concat the filtered v_diff to ctx_train
ctx_train . concat_diff_tmp ( v_diff_filtered ) ;
// reset for next iteration
cb_data . reset ( ) ;
}
// done with the model, we can now free it to make gain some memory
printf ( " Done evaluate prompts, unload model... \n " ) ;
2024-06-25 11:59:54 +00:00
bool use_pca = params . cvector_dimre_method = = DIMRE_METHOD_PCA ;
2024-06-15 16:53:40 +00:00
// prepare ctx_train for PCA
2024-06-25 11:59:54 +00:00
ctx_train . build_v_diff ( use_pca ) ;
if ( use_pca ) {
// run PCA
PCA : : pca_params pca_params ;
Threadpool: take 2 (#8672)
* Introduce ggml_compute_threadpool
- OpenMP functional: check
- Vanilla ggml functional: Check
- ggml w/threadpool functional: Check
- OpenMP no regression: No glaring problems
- Vanilla ggml no regression: No glaring problems
- ggml w/threadpool no regression: No glaring problems
* Minor fixes
* fixed use after release bug
* fixed a harmless race condition
* Fix Android bulid issue
* fix more race conditions
* fix deadlock for cases where cgraph.n_nodes == 1
and fix --poll case
* threadpool: use cpu_get_num_math to set the default number of threadpool threads
This way we avoid using E-Cores and Hyperthreaded siblings.
* bench: create fresh threadpool for each test
For benchmarking it's better to start a fresh pool for each test with the exact number of threads
needed for that test. Having larger pools is suboptimal (causes more load, etc).
* atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier
This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior.
* threadpool: make polling the default to match openmp behavior
All command line args now allow for setting poll to 0 (false).
* threadpool: do not wakeup threads in already paused threadpool
* fix potential race condition in check_for_work
* threadpool: do not create two threadpools if their params are identical
* threadpool: reduce pause/resume/wakeup overhead in common cases
We now start threadpool in paused state only if we have two.
The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead.
* threadpool: add support for hybrid polling
poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var.
poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ...
The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms.
We can tune this further as things evolve.
* threadpool: reduce the number of barrier required
New work is now indicated with an atomic counter that is incremented for
each new graph that needs to be computed.
This removes the need for extra barrier for clearing the "new_work" and
removes the special case for trivial graphs.
* threadpool: remove special-casing for disposable threadpools
With the efficient hybrid polling there is no need to make disposable pools any different.
This simplifies the overall logic and reduces branching.
Include n_threads in debug print for disposable threadpool.
Declare pause and stop flags as atomic_bool
This doesn't actually generate any memory barriers and simply informs
the thread sanitizer that these flags can be written & read by different
threads without locking.
* threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs)
This fixes the race condition with very small graphs where the main thread happens to
start a new graph while the workers are just about to exit from barriers.
* threadpool: use relaxed order for chunk sync
Full memory barrier is an overkill for this since each thread works on different chunk
* threadpool: remove abort_callback from threadpool state
* threadpool: better naming for thread/cpumask releated functions
* threadpool: consistent use of int type for n_threads params
* threadpool: add support for ggml_threadpool_params_default/init
Also removes the need for explicit mask_specified param.
all-zero cpumask means use default (usually inherited) cpu affinity mask.
* threadpool: move typedef into ggml.h
* threadpool: fix apply_priority() function name
* threadpool: fix swift wrapper errors due to n_threads int type cleanup
* threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled
* threadpool: replace checks for compute_thread ret code with proper status check
* threadpool: simplify threadpool init logic and fix main thread affinity application
Most of the init code is now exactly the same between threadpool and openmp.
* threadpool: update threadpool resume/pause function names
* threadpool: enable openmp by default for now
* threadpool: don't forget to free workers state when omp is enabled
* threadpool: avoid updating process priority on the platforms that do not require it
On Windows we need to change overall process priority class in order to set thread priorities,
but on Linux, Mac, etc we do not need to touch the overall process settings.
* threadpool: update calling thread prio and affinity only at start/resume
This avoids extra syscalls for each graph_compute()
* llama-bench: turn threadpool params into vectors, add output headers, etc
* llama-bench: add support for cool off between tests --delay
This helps for long running tests on platforms that are thermally limited (phones, laptops, etc).
--delay (disabled by default) introduces the sleep for N seconds before starting each test.
* threadpool: move process priority setting into the apps (bench and cli)
This avoids changing the overall process priority on Windows for the apps
that use ggml/llama.cpp directy.
* threadpool: move all pause/resume logic into ggml
* threadpool: futher api cleanup and prep for future refactoring
All threadpool related functions and structs use ggml_threadpool prefix.
* threadpool: minor indent fixes
* threadpool: improve setprioty error message
* Update examples/llama-bench/llama-bench.cpp
Co-authored-by: slaren <slarengh@gmail.com>
* threadpool: fix indent in set_threadpool call
* use int32_t for n_thread type in public llama.cpp API
* threadpool: use _new and _free instead of _create and _release
* fix two more public APIs to use int32_t for n_threads
* build: set _GNU_SOURCE for Adroid
---------
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
Co-authored-by: fmz <quic_fzaghlou@quic.com>
Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-08-29 23:20:53 +00:00
pca_params . n_threads = params . cpuparams . n_threads ;
pca_params . n_batch = params . n_pca_batch ;
2024-06-25 11:59:54 +00:00
pca_params . n_iterations = params . n_pca_iterations ;
PCA : : run_pca ( pca_params , ctx_train . v_diff , ctx_train . v_final ) ;
} else {
// run mean
mean : : run ( ctx_train . v_diff , ctx_train . v_final ) ;
}
2024-06-15 16:53:40 +00:00
// write output vectors to gguf
export_gguf ( ctx_train . v_final , params . cvector_outfile , model_hint ) ;
llama_backend_free ( ) ;
return 0 ;
}