* common : Changed tuple to struct (TODO fix)
Use struct `llama_init_result` to replace the previous
std::tuple<struct llama_model *, struct llama_context *>
* delete llama_init_default_params()
* delete the extra whitespace
This commit adds a --no-warmup option for llama-cli.
The motivation for this is that it can be convenient to skip the
warmup llama_decode call when debugging.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* lora: load to devide buft
* add patch tensor function
* correct tensor patch
* llama_lora_adapter_apply
* correct ggml_backend_tensor_copy
* add llm_build_mm
* fix auto merge
* update based on review comments
* add convert script
* no more transpose A
* add f16 convert
* add metadata check
* add sanity check
* fix ftype
* add requirements
* fix requirements
* fix outfile
* conversion: only allow selected models
* fix types
* cuda : do not use dmmv if the tensor does not have enough cols
* llama : lora fixes
* do not disable mmap with lora
Co-authored-by: slaren <slarengh@gmail.com>
* llm_build_lora_mm_id
* convert_lora : MoE LoRA conversion support
* convert_lora : prefer safetensors, similarly to convert_hf
* convert_hf : simplify modify_tensors for InternLM2
* convert_lora : lazy conversion
* llama : load and use alpha from LoRA adapters
* llama : use llm_build_lora_mm in most model graphs
* auto scale
* Revert "auto scale"
This reverts commit 42415a4874.
* remove redundant params
* Apply suggestions from code review
Co-authored-by: slaren <slarengh@gmail.com>
* change kv metadata
* move add_type to __init__
* convert_hf : move add_type to main()
* convert_lora : use the GGUFWriter from Model instead of overwriting it
---------
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
`emplace_back` repeatedly-called is slower than preallocating the vector to the vocab size and directly inserting the data. Some rudimentary profiling with `chrono` improves the performance of this block of code from ~500us/op to ~40us/op.
Overall, this slightly improves the sampling performance which has a more substantial impact for the `examples/lookahead` implementation -- I am able to see a ~10% performance boost in lookahead inference.
* added support for Authorization Bearer tokens
* removed auth_token, removed set_ function, other small fixes
* Update common/common.cpp
---------
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* Add llama_detokenize():
- Update header files location
- UNKNOWN and CONTROL are 'special pieces'
- Remove space after UNKNOWN and CONTROL
- Refactor llama_token_to_piece()
- Add flag: clean_up_tokenization_spaces
- Symmetric params for llama_tokenize() and llama_detokenize()
* Update and fix tokenizer tests:
- Using llama_detokenize()
- Unexpected vocab type as test fail instead of error
- Useful when automating tests:
- If you don't know in advance the vocab type
- Differenciate other loading errors
- Skip unicode surrogaes and undefined
- Gracefully exit threads
- Using exit() is throwing random exceptions
- Clean old known problematic codepoints
- Minor: confusing hexadecimal codepoint
* Update bruteforce random tests
- Add detokenizer checks
- New generator: ascii_lr_strip
- New generator: apostrophe
- Add more vocabs files
- Detokenize special tokens.
- Replace errors with '\uFFFD' when detokenizing to 'utf-8'
- More edge cases
- Better detokenization results check
* Fix add_space_prefix, set false by default
* Better leading space removal
* Do not remove space when decoding special tokens
* Bugfix: custom regexs splits undefined unicode codepoints
* 'viking' detokenizer clean spaces
* llama : add inference support and model types for T5 and FLAN-T5 model families
* llama : add new API functions to support encoder-decoder models: llama_encode(), llama_model_has_encoder(), llama_model_decoder_start_token()
* common, llama-cli, llama-batched : add support for encoder-decoder models
* convert-hf : handle shared token embeddings tensors in T5Model
* convert-hf : add support for SentencePiece BPE tokenizer in T5Model (for Pile-T5 models)
* convert-hf : add MT5ForConditionalGeneration and UMT5ForConditionalGeneration to architectures supported by T5Model
* convert : add t5 tokenizer tests, use "slow" HF tokenizer for t5
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Fixed leak in llama_control_vector_load_one() and allow llama_control_vector_load() to grow
* refactored `llama_control_vector_load_one()`
* allow multiple directions for same layer in same file
* llama_control_vector_load_one() and llama_control_vector_load() now break on error
* removed unnecessary ggml_free() call
* json: default additionalProperty to true
* json: don't force additional props after normal properties!
* json: allow space after enum/const
* json: update pydantic example to set additionalProperties: false
* json: prevent additional props to redefine a typed prop
* port not_strings to python, add trailing space
* fix not_strings & port to js+py
* Update json-schema-to-grammar.cpp
* fix _not_strings for substring overlaps
* json: fix additionalProperties default, uncomment tests
* json: add integ. test case for additionalProperties
* json: nit: simplify condition
* reformat grammar integ tests w/ R"""()""" strings where there's escapes
* update # tokens in server test: consts can now have trailing space
* llama : return nullptr from llama_grammar_init
This commit updates llama_grammar_init to return nullptr instead of
throwing an exception.
The motivation for this is that this function is declared inside an
extern "C" block and is intended/may be used from C code which will not
be able to handle exceptions thrown, and results in undefined behavior.
On Windows and using MSVC the following warning is currently generated:
```console
C:\llama.cpp\llama.cpp(13998,1): warning C4297: 'llama_grammar_init':
function assumed not to throw an exception but does
C:\llama.cpp\llama.cpp(13998,1): message :
__declspec(nothrow), throw(), noexcept(true), or noexcept was specified
on the function
```
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* squash! llama : return nullptr from llama_grammar_init
Add checks for nullptr when calling llama_grammar_init.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
---------
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
Co-authored-by: Clint Herron <hanclinto@gmail.com>
* add parameters for embeddings
--embd-normalize
--embd-output-format
--embd-separator
description in the README.md
* Update README.md
fix tipo
* Trailing whitespace
* fix json generation, use " not '
* fix merge master
* fix code formating
group of parameters // embedding
print usage for embedding parameters
---------
Co-authored-by: Brian <mofosyne@gmail.com>
* create append_pooling operation; allow to specify attention_type; add last token pooling; update examples
* find result_norm/result_embd tensors properly; update output allocation logic
* only use embd output for pooling_type NONE
* get rid of old causal_attn accessor
* take out attention_type; add in llama_set_embeddings
* bypass logits when doing non-NONE pooling
* add control-vector-generator
* calc diff
* add comments
* proof-of-concept stdlib implementation
Implements PCA and file writing using mostly standard libraries. The output is recognized as a functional control vector, but outputs gibberish.
* param parsing, refactor, comments
Added basic command-line parameters for outfile and one each positive/negative prompt.
Refactored some messy code in PCA computation and GGUF exporting.
Left a bunch of comments regarding further work needed.
* example template completions
Implements an example template set built from the positive/negative prompts like the control vector Python implementation.
* add multi prompts, multi-thread for PCA
* fix mem error
* add debugs
* fix matrix transpose multiplication
you have got to be kidding me
* preliminary template/multiprompt support
model is running out of context and that ought to be fixed (segfaulting) but other than that it looks goodish
* fix zero output & param parsing, functional templating
fixed a bug where the output file had no tensor data/was all zero
fixed a bug where single hyphen flags were not being correctly parsed
implements creation of templated prompts from input (still need to adapt based on model)
* fix square_diff matmul index range and CRLF->LF line endings
fixed a logic error where square_diff would not multiply all rows
fixed a formatting error where the provided completions.txt had CRLF line endings
* add command-line args for num threads, num completions file lines, always reload model
refactored a few things and did what the commit message says on the tin
* code aestheticization
* fix compiler warnings
* in-series multithreading for prompt embedding?
added commented-out code to attempt to start implementing mutlithreading for embedding in main
* remove unnecessary multithreading
* interim fix memory leak
* translated everything but PCA (I think)
* tentatively translate the rest
* fix ggml errors and make new ones
at least it compiles and runs
* fix cb_eval
* temporary commit while I move dev environments
it finally outputs a functioning control vector - "functioning" in the sense that it can be loaded and it clearly has the right idea, but makes the model incoherent
* update debug statements
* pre-tokenize so we can allocate correct memory to ctx_diffs_wrapped
* update comments
* (wip) refactor
* clean up PCA ggml implementation
* fix shape of v_diff_original
* add n_batch for pca
* working version
* remember to copy back the last_eigenvector
* fix n_completions
* bring back n_completions
* default n_pca_batch to 20
* fix macos build
* add to makefile all targets
* use ggml_format_name
* add readme
* fix .editorconfig
* use ggml_backend_tensor_copy
* attemp to fix compile problem on mac
* fix compile warn
* reuse allocr
* move param parser to common
* better error handling
* clean up a bit
* add print_usage
* shorten help msg
* beautify help msg
* escape prompt by default
* change compile target to llama-cvector-generator
* typo
* disable GPU for PCA
* code style
---------
Co-authored-by: Christian Zhou-Zheng <christianzhouzheng@gmail.com>
* server : Smart selection of available slot using Longest Common Substring
* add usage
* remove trailing whitespaces
* Use Longest Common Prefix (LCP) instead of LCS
* Rename argument
* common : gpt_params_parse do not print usage
* common : rework usage print (wip)
* common : valign
* common : rework print_usage
* infill : remove cfg support
* common : reorder args
* server : deduplicate parameters
ggml-ci
* common : add missing header
ggml-ci
* common : remote --random-prompt usages
ggml-ci
* examples : migrate to gpt_params
ggml-ci
* batched-bench : migrate to gpt_params
* retrieval : migrate to gpt_params
* common : change defaults for escape and n_ctx
* common : remove chatml and instruct params
ggml-ci
* common : passkey use gpt_params
* main : don't print special tokens with --grammar
The CLI interface was recently changed to print special control tokens
like the </s> stop message one. This token shouldn't be printed if the
grammar flag was passed, unless the grammar specifies it, because that
breaks shell-scriptability.
* main: use seperate stream for control characters
* main: use dprintf and add --ctrl-token-no-out and --ctrl-token-fd-out
* main: dprintf isn't part of the IEEE POSIX standard. Just use write().
* main: remove --ctrl-token-fd-out in favor for fcntl() based detection
* common.cpp: accidentally removed --interactive-first
* main: only merge stdout and control token if not in conversation or grammar mode
* main: rejig control token descriptor handling
* main: must check pipe status on very top of program
* main: renamed --no-special from --ctrl-token-no-out and other refactoring
* main: refactor ctrl_token_no_out --> no_special
* llama: rename llama_token_is_control_token() to llama_token_is_control()
* main: remove special token file descriptor feature (#5)
---------
Co-authored-by: Brian <mofosyne@gmail.com>
* examples: cache hf model when --model not provided
* examples: cache hf model when --model not provided
* examples: cache hf model when --model not provided
* examples: cache hf model when --model not provided
* examples: cache hf model when --model not provided
* logging: add proper checks for clang to avoid errors and warnings with VA_ARGS
* build: add CMake Presets and toolchian files for Windows ARM64
* matmul-int8: enable matmul-int8 with MSVC and fix Clang warnings
* ci: add support for optimized Windows ARM64 builds with MSVC and LLVM
* matmul-int8: fixed typos in q8_0_q8_0 matmuls
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* matmul-int8: remove unnecessary casts in q8_0_q8_0
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
The llama.cpp grammar parser had a bug where forgetting to add a closing
quotation mark to strings would cause parsing to crash. Anyone running a
server on a public endpoint is advised to upgrade. To reproduce this bug
./llamafile -m foo.gguf -p bar --grammar 'root::="'
Credit for discovering and reporting this issue goes to Eclypsium
Security Researcher Richard Johnson <Richard.johnson@eclypsium.com>.
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
* imatrix: save the dataset file used in the output file
* llama: support kv overrides type string string
* common: factorize KV Overrides parsing between common and server
* quantize: add imatrix n entries and dataset KV metadata
quantize: factorize KV Overrides parsing between common
#6656
* llama: remove kv override str_value initialization as it does not compile on some toolchain
* quantize: add imatrix m_last_call as `quantize.imatrix.chunks_count`
* quantize: add imatrix filename in KV
* llama: add llama_model_kv_override_free
* common: add llama_model_kv_override_free
common: free kv override if used after model loading
* llama: finally move the string KV override value to the stack
* llama : minor
* no need to add a NUL to the std::vector, std::string can be initialized from a pair of iterators.
Co-authored-by: slaren <slarengh@gmail.com>
* kv override: ensure string termination
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
* add basic tensor data validation function
* add --check-tensors command line argument
tensor validation is disabled by default and can be enabled by adding
`--check-tensors` to the command line arguments.
quantize always validates tensors.
* fix: revert showing control tokens by default
* feat: revert changes to default behavior of llama_token_to_piece; provide overridden declaration to receive "bool special" param to toggle showing control tokens
* feat: use the overridden declaration of llama_token_to_piece from common/common.cpp to specify "false" so that control tokens are not shown in chat completion responses"
* common : simplify
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This change upstreams llamafile's cpu matrix multiplication kernels
which improve image and prompt evaluation speed. For starters, Q4_0
and Q8_0 weights should go ~40% faster on CPU. The biggest benefits
are with data types like f16 / f32, which process prompts 2x faster
thus making them faster than quantized data types for prompt evals.
This change also introduces bona fide AVX512 support since tinyBLAS
is able to exploit the larger register file. For example, on my CPU
llama.cpp llava-cli processes an image prompt at 305 tokens/second,
using the Q4_K and Q4_0 types, which has always been faster than if
we used f16 LLaVA weights, which at HEAD go 188 tokens/second. With
this change, f16 LLaVA performance leap frogs to 464 tokens/second.
On Intel Core i9-14900K this change improves F16 prompt perf by 5x.
For example, using llama.cpp at HEAD with Mistral 7b f16 to process
a 215 token prompt will go 13 tok/sec. This change has fixes making
it go 52 tok/sec. It's mostly thanks to my vectorized outer product
kernels but also because I added support for correctly counting the
number of cores on Alderlake, so the default thread count discounts
Intel's new efficiency cores. Only Linux right now can count cores.
This work was sponsored by Mozilla who's given permission to change
the license of this code from Apache 2.0 to MIT. To read more about
what's improved, and how it works, see: https://justine.lol/matmul/
* gguf-debug: Example how to use ggml callback for debugging
* gguf-debug: no mutex, verify type, fix stride.
* llama: cv eval: move cb eval field in common gpt_params
* ggml_debug: use common gpt_params to pass cb eval.
Fix get tensor SIGV random.
* ggml_debug: ci: add tests
* ggml_debug: EOL in CMakeLists.txt
* ggml_debug: Remove unused param n_batch, no batching here
* ggml_debug: fix trailing spaces
* ggml_debug: fix trailing spaces
* common: fix cb_eval and user data not initialized
* ci: build revert label
* ggml_debug: add main test label
* doc: add a model: add a link to ggml-debug
* ggml-debug: add to make toolchain
* ggml-debug: tests add the main label
* ggml-debug: ci add test curl label
* common: allow the warmup to be disabled in llama_init_from_gpt_params
* ci: add curl test
* ggml-debug: better tensor type support
* gitignore : ggml-debug
* ggml-debug: printing also the sum of each tensor
* ggml-debug: remove block size
* eval-callback: renamed from ggml-debug
* eval-callback: fix make toolchain
---------
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Key changes:
* BERT conversion: fix abuse of LlamaHfVocab, do not set BOS or EOS
* Nomic Embed conversion: pad vocab instead of slicing embedding tensor
* llama_tokenize: handle added special tokens like HF does
* llama_sampling_sample with default args is more naively usable
* Batches populated by either llama_batch_get_one or llama_batch_add work with default args
* Previously get_one could use the default argument
* Previously add should usually have used the last index where logits[idx] == true
* This hopefully encourages the use of llama_batch_add
* By giving expected results when using default arguments.
* Adds "negative indexing" feature to llama_get_logits_ith and llama_get_embeddings_ith
* Believed to work with any currently well behaved program
* Default arg now works for both cases (previously would give strange results for add case)
* Any non-negative number is unaffected and behaves as previously
* Negative arguments were previously invalid.
* Implemented as a special case of indexing as suggested by @compilade in https://github.com/ggerganov/llama.cpp/pull/6519
* Fixed mismatch type errors
* cited in macOS CI tests
* Missed in original updates based on PR feedback in https://github.com/ggerganov/llama.cpp/pull/6519
* llama : save and restore kv cache for single seq id
* remove trailing whitespace
* respond error in case there's no space in the kv cache
* add kv seq save restore to test case
* add --slot-save-path arg to enable save restore and restrict save location
* Returning 0 for some cases, instead of asserting.
* cleanup error cases
* rename sequence state functions
* rename state get set functions
* add previous function names back in with DEPRECATED notice
* update doc
* adjust endpoints to preferred style
* fix restoring zero cell count
* handle seq rm return value
* unused param
* keep in the size check
* fix return types
* add server test case for slot save restore
* cleanup
* add cake
* cleanup style
* add special
* removing a whole sequence never fails
* move sequence state file functionality from server to llama to match session api and add version tags
* catch exceptions on save as well
* error log messages
* check types for stricter restore
* update server doc
* readme : update API changes date
* strict filename validation
* move include, reject bom as well
* also reject empty filename
* reject whitespace and trailing dot
---------
Co-authored-by: Martin Evans <martindevans@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit removes one of the two identical checks for curl being NULL
in llama_load_model_from_url.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* sampling: remove duplicated code for probability distribution access
* free original_logits
* fix original_logits allocation
* fixes based on review @cebtenzzre
* change function name to `llama_sampling_prepare`