llama.cpp/examples/main/main.cpp

899 lines
36 KiB
C++
Raw Normal View History

#include "arg.h"
#include "common.h"
#include "console.h"
#include "log.h"
#include "sampling.h"
#include "llama.h"
2023-03-10 18:40:58 +00:00
#include <cassert>
#include <cstdio>
#include <cstring>
#include <ctime>
2023-03-10 18:40:58 +00:00
#include <fstream>
#include <iostream>
#include <sstream>
2023-03-10 18:40:58 +00:00
#include <string>
#include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <signal.h>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static llama_context ** g_ctx;
static llama_model ** g_model;
static common_sampler ** g_smpl;
static common_params * g_params;
static std::vector<llama_token> * g_input_tokens;
static std::ostringstream * g_output_ss;
static std::vector<llama_token> * g_output_tokens;
static bool is_interacting = false;
static bool need_insert_eot = false;
static void print_usage(int argc, char ** argv) {
(void) argc;
LOG("\nexample usage:\n");
LOG("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128\n", argv[0]);
LOG("\n chat (conversation): %s -m your_model.gguf -p \"You are a helpful assistant\" -cnv\n", argv[0]);
LOG("\n");
}
static bool file_exists(const std::string & path) {
std::ifstream f(path.c_str());
return f.good();
}
static bool file_is_empty(const std::string & path) {
std::ifstream f;
f.exceptions(std::ifstream::failbit | std::ifstream::badbit);
f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
return f.tellg() == 0;
}
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
static void sigint_handler(int signo) {
if (signo == SIGINT) {
if (!is_interacting && g_params->interactive) {
is_interacting = true;
need_insert_eot = true;
} else {
console::cleanup();
LOG("\n");
common_perf_print(*g_ctx, *g_smpl);
// make sure all logs are flushed
LOG("Interrupted by user\n");
common_log_pause(common_log_main());
_exit(130);
}
}
}
#endif
static std::string chat_add_and_format(struct llama_model * model, std::vector<common_chat_msg> & chat_msgs, const std::string & role, const std::string & content) {
common_chat_msg new_msg{role, content};
auto formatted = common_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user");
chat_msgs.push_back({role, content});
LOG_DBG("formatted: '%s'\n", formatted.c_str());
return formatted;
}
2023-03-10 18:40:58 +00:00
int main(int argc, char ** argv) {
common_params params;
g_params = &params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) {
2023-03-10 18:40:58 +00:00
return 1;
}
common_init();
auto & sparams = params.sampling;
// save choice to use color for later
// (note for later: this is a slightly awkward choice)
console::init(params.simple_io, params.use_color);
atexit([]() { console::cleanup(); });
llama : custom attention mask + parallel decoding + no context swaps (#3228) * tests : verify that RoPE is "additive" * llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask) * ggml : ggml_rope now takes a vector with positions instead of n_past * metal : add rope_f16 kernel + optimize cpy kernels * llama : unified KV cache + batch inference API * llama : add new llama_decode() API that works with llama_batch * llama : add cell_max heuristic for more efficient kv_cache * llama : extend llama_kv_cache API * llama : more robust cell_max heuristic + wip shift * metal : disable concurrency optimization * llama : add llama_kv_cache_shift_seq + no more context swaps * llama : apply K-cache roping for Falcon and Baichuan * speculative : fix KV cache management * parallel : example for serving multiple users in parallel * parallel : disable hot-plug to avoid cache fragmentation * fixes : speculative KV cache + llama worst-case graph * llama : extend batch API to select which logits to output * llama : fix worst case graph build * ggml-cuda : update rope implementation for parallel decoding (#3254) * ggml-cuda : update rope implementation for parallel decoding * better solution for p0 computation * fix rope * simpler rope implementation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * make : add parallel to build + fix static functions in llama.cpp * simple : fix token counting * parallel : various improvements * llama : fix cell_max logic + rename functions * parallel : try smaller batches when the KV cache is fragmented * parallel : fix sequence termination criteria * llama : silence errors KV cache errors * parallel : remove new line from prompt * parallel : process system prompt once + configurable paramters + llama API * parallel : remove question with short answers * parallel : count cache misses * parallel : print misses on each request * parallel : minor * llama : fix n_kv to never become 0 * parallel : rename hot-plug to continuous-batching * llama : improve llama_batch API + simplify parallel example * simple : add parallel decoding support * simple : improve comments + free batch * ggml-cuda : add rope f16, restore performance with parallel decoding (#3272) * ggml-cuda : add rope f16, restore performance * offload KQ_mask with all models * fix rope shift --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : disable MPI for now ggml-ci * train : make KQ_pos memory buffer permanent via dummy scale op * ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275) ggml-ci * parallel : fix bug (extra BOS) + smaller token_prev array * parallel : fix cases where the input prompts can overflow the batch * parallel : add disabled experimental batch chunking in powers of two * llama : llama.h formatting + comments * simple : add README.md * llama : fix kv cache heuristic when context is less than 32 * parallel : fix crash when `-n -1` * llama : simplify returns if/else branches * metal : use mm kernels for batch size > 2 * examples : utilize new llama_get_logits_ith() * examples : add example for batched decoding * examples : do not eval prompt 2 times (close #3348) * server : clear the KV cache beyond n_past before llama_decode * server : avoid context swaps by shifting the KV cache --------- Co-authored-by: slaren <slarengh@gmail.com>
2023-09-28 16:04:36 +00:00
if (params.logits_all) {
LOG_ERR("************\n");
LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
LOG_ERR("************\n\n");
return 0;
}
if (params.embedding) {
LOG_ERR("************\n");
LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
LOG_ERR("************\n\n");
return 0;
}
if (params.n_ctx != 0 && params.n_ctx < 8) {
LOG_WRN("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
params.n_ctx = 8;
}
if (params.rope_freq_base != 0.0) {
LOG_WRN("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
llama : add custom RoPE (#2054) * Implement customizable RoPE The original RoPE has pre-defined parameters theta_i = 10000^(−2(i−1)/d), for i in [1, 2, ..., d/2] Our customizable RoPE, ggml_rope_custom_inplace, uses theta_i = scale * base^(−2(i−1)/d), for i in [1, 2, ..., d/2] with the default matches the original scale = 1.0 base = 10000 The new command line arguments --rope-freq-base --rope-freq-scale set the two new RoPE parameter. Recent researches show changing these two parameters extends the context limit with minimal loss. 1. Extending Context to 8K kaiokendev https://kaiokendev.github.io/til#extending-context-to-8k 2. Extending Context Window of Large Language Models via Positional Interpolation Shouyuan Chen, Sherman Wong, Liangjian Chen, Yuandong Tian https://arxiv.org/abs/2306.15595 3. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation. https://www.reddit.com/user/bloc97 https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ For the bold, try adding the following command line parameters to your favorite model: -c 16384 --rope-freq-base 80000 --rope-freq-scale 0.5 * ggml-metal: fix custom rope * common: fix argument names in help * llama: increase MEM_REQ_EVAL for MODEL_3B It avoids crashing for quantized weights on CPU. Better ways to calculate the required buffer size would be better. * llama: make MEM_REQ_EVAL depend on n_ctx * server: use proper Content-Type in curl examples Without the header Content-Type: application/json, curl will POST with Content-Type: application/x-www-form-urlencoded Though our simple server doesn't care, the httplib.h used has a limit with CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 8192 With Content-Type: application/json, we can send large json data. * style : minor fixes, mostly indentations * ggml : fix asserts --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-15 10:34:16 +00:00
}
if (params.rope_freq_scale != 0.0) {
LOG_WRN("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
llama : add custom RoPE (#2054) * Implement customizable RoPE The original RoPE has pre-defined parameters theta_i = 10000^(−2(i−1)/d), for i in [1, 2, ..., d/2] Our customizable RoPE, ggml_rope_custom_inplace, uses theta_i = scale * base^(−2(i−1)/d), for i in [1, 2, ..., d/2] with the default matches the original scale = 1.0 base = 10000 The new command line arguments --rope-freq-base --rope-freq-scale set the two new RoPE parameter. Recent researches show changing these two parameters extends the context limit with minimal loss. 1. Extending Context to 8K kaiokendev https://kaiokendev.github.io/til#extending-context-to-8k 2. Extending Context Window of Large Language Models via Positional Interpolation Shouyuan Chen, Sherman Wong, Liangjian Chen, Yuandong Tian https://arxiv.org/abs/2306.15595 3. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation. https://www.reddit.com/user/bloc97 https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ For the bold, try adding the following command line parameters to your favorite model: -c 16384 --rope-freq-base 80000 --rope-freq-scale 0.5 * ggml-metal: fix custom rope * common: fix argument names in help * llama: increase MEM_REQ_EVAL for MODEL_3B It avoids crashing for quantized weights on CPU. Better ways to calculate the required buffer size would be better. * llama: make MEM_REQ_EVAL depend on n_ctx * server: use proper Content-Type in curl examples Without the header Content-Type: application/json, curl will POST with Content-Type: application/x-www-form-urlencoded Though our simple server doesn't care, the httplib.h used has a limit with CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 8192 With Content-Type: application/json, we can send large json data. * style : minor fixes, mostly indentations * ggml : fix asserts --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-15 10:34:16 +00:00
}
LOG_INF("%s: llama backend init\n", __func__);
ggml : add numa options (#5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model = nullptr;
llama_context * ctx = nullptr;
common_sampler * smpl = nullptr;
g_model = &model;
g_ctx = &ctx;
g_smpl = &smpl;
2023-03-10 18:40:58 +00:00
std::vector<common_chat_msg> chat_msgs;
// load the model and apply lora adapter, if any
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
common_init_result llama_init = common_init_from_params(params);
model = llama_init.model.get();
ctx = llama_init.context.get();
if (model == NULL) {
LOG_ERR("%s: error: unable to load model\n", __func__);
return 1;
2023-04-17 15:28:55 +00:00
}
LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads);
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_new");
auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_free");
Threadpool: take 2 (#8672) * Introduce ggml_compute_threadpool - OpenMP functional: check - Vanilla ggml functional: Check - ggml w/threadpool functional: Check - OpenMP no regression: No glaring problems - Vanilla ggml no regression: No glaring problems - ggml w/threadpool no regression: No glaring problems * Minor fixes * fixed use after release bug * fixed a harmless race condition * Fix Android bulid issue * fix more race conditions * fix deadlock for cases where cgraph.n_nodes == 1 and fix --poll case * threadpool: use cpu_get_num_math to set the default number of threadpool threads This way we avoid using E-Cores and Hyperthreaded siblings. * bench: create fresh threadpool for each test For benchmarking it's better to start a fresh pool for each test with the exact number of threads needed for that test. Having larger pools is suboptimal (causes more load, etc). * atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior. * threadpool: make polling the default to match openmp behavior All command line args now allow for setting poll to 0 (false). * threadpool: do not wakeup threads in already paused threadpool * fix potential race condition in check_for_work * threadpool: do not create two threadpools if their params are identical * threadpool: reduce pause/resume/wakeup overhead in common cases We now start threadpool in paused state only if we have two. The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead. * threadpool: add support for hybrid polling poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var. poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ... The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms. We can tune this further as things evolve. * threadpool: reduce the number of barrier required New work is now indicated with an atomic counter that is incremented for each new graph that needs to be computed. This removes the need for extra barrier for clearing the "new_work" and removes the special case for trivial graphs. * threadpool: remove special-casing for disposable threadpools With the efficient hybrid polling there is no need to make disposable pools any different. This simplifies the overall logic and reduces branching. Include n_threads in debug print for disposable threadpool. Declare pause and stop flags as atomic_bool This doesn't actually generate any memory barriers and simply informs the thread sanitizer that these flags can be written & read by different threads without locking. * threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs) This fixes the race condition with very small graphs where the main thread happens to start a new graph while the workers are just about to exit from barriers. * threadpool: use relaxed order for chunk sync Full memory barrier is an overkill for this since each thread works on different chunk * threadpool: remove abort_callback from threadpool state * threadpool: better naming for thread/cpumask releated functions * threadpool: consistent use of int type for n_threads params * threadpool: add support for ggml_threadpool_params_default/init Also removes the need for explicit mask_specified param. all-zero cpumask means use default (usually inherited) cpu affinity mask. * threadpool: move typedef into ggml.h * threadpool: fix apply_priority() function name * threadpool: fix swift wrapper errors due to n_threads int type cleanup * threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled * threadpool: replace checks for compute_thread ret code with proper status check * threadpool: simplify threadpool init logic and fix main thread affinity application Most of the init code is now exactly the same between threadpool and openmp. * threadpool: update threadpool resume/pause function names * threadpool: enable openmp by default for now * threadpool: don't forget to free workers state when omp is enabled * threadpool: avoid updating process priority on the platforms that do not require it On Windows we need to change overall process priority class in order to set thread priorities, but on Linux, Mac, etc we do not need to touch the overall process settings. * threadpool: update calling thread prio and affinity only at start/resume This avoids extra syscalls for each graph_compute() * llama-bench: turn threadpool params into vectors, add output headers, etc * llama-bench: add support for cool off between tests --delay This helps for long running tests on platforms that are thermally limited (phones, laptops, etc). --delay (disabled by default) introduces the sleep for N seconds before starting each test. * threadpool: move process priority setting into the apps (bench and cli) This avoids changing the overall process priority on Windows for the apps that use ggml/llama.cpp directy. * threadpool: move all pause/resume logic into ggml * threadpool: futher api cleanup and prep for future refactoring All threadpool related functions and structs use ggml_threadpool prefix. * threadpool: minor indent fixes * threadpool: improve setprioty error message * Update examples/llama-bench/llama-bench.cpp Co-authored-by: slaren <slarengh@gmail.com> * threadpool: fix indent in set_threadpool call * use int32_t for n_thread type in public llama.cpp API * threadpool: use _new and _free instead of _create and _release * fix two more public APIs to use int32_t for n_threads * build: set _GNU_SOURCE for Adroid --------- Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com> Co-authored-by: fmz <quic_fzaghlou@quic.com> Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
2024-08-29 23:20:53 +00:00
struct ggml_threadpool_params tpp_batch =
ggml_threadpool_params_from_cpu_params(params.cpuparams_batch);
struct ggml_threadpool_params tpp =
ggml_threadpool_params_from_cpu_params(params.cpuparams);
set_process_priority(params.cpuparams.priority);
struct ggml_threadpool * threadpool_batch = NULL;
if (!ggml_threadpool_params_match(&tpp, &tpp_batch)) {
threadpool_batch = ggml_threadpool_new_fn(&tpp_batch);
Threadpool: take 2 (#8672) * Introduce ggml_compute_threadpool - OpenMP functional: check - Vanilla ggml functional: Check - ggml w/threadpool functional: Check - OpenMP no regression: No glaring problems - Vanilla ggml no regression: No glaring problems - ggml w/threadpool no regression: No glaring problems * Minor fixes * fixed use after release bug * fixed a harmless race condition * Fix Android bulid issue * fix more race conditions * fix deadlock for cases where cgraph.n_nodes == 1 and fix --poll case * threadpool: use cpu_get_num_math to set the default number of threadpool threads This way we avoid using E-Cores and Hyperthreaded siblings. * bench: create fresh threadpool for each test For benchmarking it's better to start a fresh pool for each test with the exact number of threads needed for that test. Having larger pools is suboptimal (causes more load, etc). * atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior. * threadpool: make polling the default to match openmp behavior All command line args now allow for setting poll to 0 (false). * threadpool: do not wakeup threads in already paused threadpool * fix potential race condition in check_for_work * threadpool: do not create two threadpools if their params are identical * threadpool: reduce pause/resume/wakeup overhead in common cases We now start threadpool in paused state only if we have two. The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead. * threadpool: add support for hybrid polling poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var. poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ... The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms. We can tune this further as things evolve. * threadpool: reduce the number of barrier required New work is now indicated with an atomic counter that is incremented for each new graph that needs to be computed. This removes the need for extra barrier for clearing the "new_work" and removes the special case for trivial graphs. * threadpool: remove special-casing for disposable threadpools With the efficient hybrid polling there is no need to make disposable pools any different. This simplifies the overall logic and reduces branching. Include n_threads in debug print for disposable threadpool. Declare pause and stop flags as atomic_bool This doesn't actually generate any memory barriers and simply informs the thread sanitizer that these flags can be written & read by different threads without locking. * threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs) This fixes the race condition with very small graphs where the main thread happens to start a new graph while the workers are just about to exit from barriers. * threadpool: use relaxed order for chunk sync Full memory barrier is an overkill for this since each thread works on different chunk * threadpool: remove abort_callback from threadpool state * threadpool: better naming for thread/cpumask releated functions * threadpool: consistent use of int type for n_threads params * threadpool: add support for ggml_threadpool_params_default/init Also removes the need for explicit mask_specified param. all-zero cpumask means use default (usually inherited) cpu affinity mask. * threadpool: move typedef into ggml.h * threadpool: fix apply_priority() function name * threadpool: fix swift wrapper errors due to n_threads int type cleanup * threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled * threadpool: replace checks for compute_thread ret code with proper status check * threadpool: simplify threadpool init logic and fix main thread affinity application Most of the init code is now exactly the same between threadpool and openmp. * threadpool: update threadpool resume/pause function names * threadpool: enable openmp by default for now * threadpool: don't forget to free workers state when omp is enabled * threadpool: avoid updating process priority on the platforms that do not require it On Windows we need to change overall process priority class in order to set thread priorities, but on Linux, Mac, etc we do not need to touch the overall process settings. * threadpool: update calling thread prio and affinity only at start/resume This avoids extra syscalls for each graph_compute() * llama-bench: turn threadpool params into vectors, add output headers, etc * llama-bench: add support for cool off between tests --delay This helps for long running tests on platforms that are thermally limited (phones, laptops, etc). --delay (disabled by default) introduces the sleep for N seconds before starting each test. * threadpool: move process priority setting into the apps (bench and cli) This avoids changing the overall process priority on Windows for the apps that use ggml/llama.cpp directy. * threadpool: move all pause/resume logic into ggml * threadpool: futher api cleanup and prep for future refactoring All threadpool related functions and structs use ggml_threadpool prefix. * threadpool: minor indent fixes * threadpool: improve setprioty error message * Update examples/llama-bench/llama-bench.cpp Co-authored-by: slaren <slarengh@gmail.com> * threadpool: fix indent in set_threadpool call * use int32_t for n_thread type in public llama.cpp API * threadpool: use _new and _free instead of _create and _release * fix two more public APIs to use int32_t for n_threads * build: set _GNU_SOURCE for Adroid --------- Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com> Co-authored-by: fmz <quic_fzaghlou@quic.com> Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
2024-08-29 23:20:53 +00:00
if (!threadpool_batch) {
LOG_ERR("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads);
return 1;
Threadpool: take 2 (#8672) * Introduce ggml_compute_threadpool - OpenMP functional: check - Vanilla ggml functional: Check - ggml w/threadpool functional: Check - OpenMP no regression: No glaring problems - Vanilla ggml no regression: No glaring problems - ggml w/threadpool no regression: No glaring problems * Minor fixes * fixed use after release bug * fixed a harmless race condition * Fix Android bulid issue * fix more race conditions * fix deadlock for cases where cgraph.n_nodes == 1 and fix --poll case * threadpool: use cpu_get_num_math to set the default number of threadpool threads This way we avoid using E-Cores and Hyperthreaded siblings. * bench: create fresh threadpool for each test For benchmarking it's better to start a fresh pool for each test with the exact number of threads needed for that test. Having larger pools is suboptimal (causes more load, etc). * atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior. * threadpool: make polling the default to match openmp behavior All command line args now allow for setting poll to 0 (false). * threadpool: do not wakeup threads in already paused threadpool * fix potential race condition in check_for_work * threadpool: do not create two threadpools if their params are identical * threadpool: reduce pause/resume/wakeup overhead in common cases We now start threadpool in paused state only if we have two. The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead. * threadpool: add support for hybrid polling poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var. poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ... The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms. We can tune this further as things evolve. * threadpool: reduce the number of barrier required New work is now indicated with an atomic counter that is incremented for each new graph that needs to be computed. This removes the need for extra barrier for clearing the "new_work" and removes the special case for trivial graphs. * threadpool: remove special-casing for disposable threadpools With the efficient hybrid polling there is no need to make disposable pools any different. This simplifies the overall logic and reduces branching. Include n_threads in debug print for disposable threadpool. Declare pause and stop flags as atomic_bool This doesn't actually generate any memory barriers and simply informs the thread sanitizer that these flags can be written & read by different threads without locking. * threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs) This fixes the race condition with very small graphs where the main thread happens to start a new graph while the workers are just about to exit from barriers. * threadpool: use relaxed order for chunk sync Full memory barrier is an overkill for this since each thread works on different chunk * threadpool: remove abort_callback from threadpool state * threadpool: better naming for thread/cpumask releated functions * threadpool: consistent use of int type for n_threads params * threadpool: add support for ggml_threadpool_params_default/init Also removes the need for explicit mask_specified param. all-zero cpumask means use default (usually inherited) cpu affinity mask. * threadpool: move typedef into ggml.h * threadpool: fix apply_priority() function name * threadpool: fix swift wrapper errors due to n_threads int type cleanup * threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled * threadpool: replace checks for compute_thread ret code with proper status check * threadpool: simplify threadpool init logic and fix main thread affinity application Most of the init code is now exactly the same between threadpool and openmp. * threadpool: update threadpool resume/pause function names * threadpool: enable openmp by default for now * threadpool: don't forget to free workers state when omp is enabled * threadpool: avoid updating process priority on the platforms that do not require it On Windows we need to change overall process priority class in order to set thread priorities, but on Linux, Mac, etc we do not need to touch the overall process settings. * threadpool: update calling thread prio and affinity only at start/resume This avoids extra syscalls for each graph_compute() * llama-bench: turn threadpool params into vectors, add output headers, etc * llama-bench: add support for cool off between tests --delay This helps for long running tests on platforms that are thermally limited (phones, laptops, etc). --delay (disabled by default) introduces the sleep for N seconds before starting each test. * threadpool: move process priority setting into the apps (bench and cli) This avoids changing the overall process priority on Windows for the apps that use ggml/llama.cpp directy. * threadpool: move all pause/resume logic into ggml * threadpool: futher api cleanup and prep for future refactoring All threadpool related functions and structs use ggml_threadpool prefix. * threadpool: minor indent fixes * threadpool: improve setprioty error message * Update examples/llama-bench/llama-bench.cpp Co-authored-by: slaren <slarengh@gmail.com> * threadpool: fix indent in set_threadpool call * use int32_t for n_thread type in public llama.cpp API * threadpool: use _new and _free instead of _create and _release * fix two more public APIs to use int32_t for n_threads * build: set _GNU_SOURCE for Adroid --------- Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com> Co-authored-by: fmz <quic_fzaghlou@quic.com> Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
2024-08-29 23:20:53 +00:00
}
// Start the non-batch threadpool in the paused state
tpp.paused = true;
}
struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
Threadpool: take 2 (#8672) * Introduce ggml_compute_threadpool - OpenMP functional: check - Vanilla ggml functional: Check - ggml w/threadpool functional: Check - OpenMP no regression: No glaring problems - Vanilla ggml no regression: No glaring problems - ggml w/threadpool no regression: No glaring problems * Minor fixes * fixed use after release bug * fixed a harmless race condition * Fix Android bulid issue * fix more race conditions * fix deadlock for cases where cgraph.n_nodes == 1 and fix --poll case * threadpool: use cpu_get_num_math to set the default number of threadpool threads This way we avoid using E-Cores and Hyperthreaded siblings. * bench: create fresh threadpool for each test For benchmarking it's better to start a fresh pool for each test with the exact number of threads needed for that test. Having larger pools is suboptimal (causes more load, etc). * atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior. * threadpool: make polling the default to match openmp behavior All command line args now allow for setting poll to 0 (false). * threadpool: do not wakeup threads in already paused threadpool * fix potential race condition in check_for_work * threadpool: do not create two threadpools if their params are identical * threadpool: reduce pause/resume/wakeup overhead in common cases We now start threadpool in paused state only if we have two. The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead. * threadpool: add support for hybrid polling poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var. poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ... The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms. We can tune this further as things evolve. * threadpool: reduce the number of barrier required New work is now indicated with an atomic counter that is incremented for each new graph that needs to be computed. This removes the need for extra barrier for clearing the "new_work" and removes the special case for trivial graphs. * threadpool: remove special-casing for disposable threadpools With the efficient hybrid polling there is no need to make disposable pools any different. This simplifies the overall logic and reduces branching. Include n_threads in debug print for disposable threadpool. Declare pause and stop flags as atomic_bool This doesn't actually generate any memory barriers and simply informs the thread sanitizer that these flags can be written & read by different threads without locking. * threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs) This fixes the race condition with very small graphs where the main thread happens to start a new graph while the workers are just about to exit from barriers. * threadpool: use relaxed order for chunk sync Full memory barrier is an overkill for this since each thread works on different chunk * threadpool: remove abort_callback from threadpool state * threadpool: better naming for thread/cpumask releated functions * threadpool: consistent use of int type for n_threads params * threadpool: add support for ggml_threadpool_params_default/init Also removes the need for explicit mask_specified param. all-zero cpumask means use default (usually inherited) cpu affinity mask. * threadpool: move typedef into ggml.h * threadpool: fix apply_priority() function name * threadpool: fix swift wrapper errors due to n_threads int type cleanup * threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled * threadpool: replace checks for compute_thread ret code with proper status check * threadpool: simplify threadpool init logic and fix main thread affinity application Most of the init code is now exactly the same between threadpool and openmp. * threadpool: update threadpool resume/pause function names * threadpool: enable openmp by default for now * threadpool: don't forget to free workers state when omp is enabled * threadpool: avoid updating process priority on the platforms that do not require it On Windows we need to change overall process priority class in order to set thread priorities, but on Linux, Mac, etc we do not need to touch the overall process settings. * threadpool: update calling thread prio and affinity only at start/resume This avoids extra syscalls for each graph_compute() * llama-bench: turn threadpool params into vectors, add output headers, etc * llama-bench: add support for cool off between tests --delay This helps for long running tests on platforms that are thermally limited (phones, laptops, etc). --delay (disabled by default) introduces the sleep for N seconds before starting each test. * threadpool: move process priority setting into the apps (bench and cli) This avoids changing the overall process priority on Windows for the apps that use ggml/llama.cpp directy. * threadpool: move all pause/resume logic into ggml * threadpool: futher api cleanup and prep for future refactoring All threadpool related functions and structs use ggml_threadpool prefix. * threadpool: minor indent fixes * threadpool: improve setprioty error message * Update examples/llama-bench/llama-bench.cpp Co-authored-by: slaren <slarengh@gmail.com> * threadpool: fix indent in set_threadpool call * use int32_t for n_thread type in public llama.cpp API * threadpool: use _new and _free instead of _create and _release * fix two more public APIs to use int32_t for n_threads * build: set _GNU_SOURCE for Adroid --------- Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com> Co-authored-by: fmz <quic_fzaghlou@quic.com> Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
2024-08-29 23:20:53 +00:00
if (!threadpool) {
LOG_ERR("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
return 1;
Threadpool: take 2 (#8672) * Introduce ggml_compute_threadpool - OpenMP functional: check - Vanilla ggml functional: Check - ggml w/threadpool functional: Check - OpenMP no regression: No glaring problems - Vanilla ggml no regression: No glaring problems - ggml w/threadpool no regression: No glaring problems * Minor fixes * fixed use after release bug * fixed a harmless race condition * Fix Android bulid issue * fix more race conditions * fix deadlock for cases where cgraph.n_nodes == 1 and fix --poll case * threadpool: use cpu_get_num_math to set the default number of threadpool threads This way we avoid using E-Cores and Hyperthreaded siblings. * bench: create fresh threadpool for each test For benchmarking it's better to start a fresh pool for each test with the exact number of threads needed for that test. Having larger pools is suboptimal (causes more load, etc). * atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior. * threadpool: make polling the default to match openmp behavior All command line args now allow for setting poll to 0 (false). * threadpool: do not wakeup threads in already paused threadpool * fix potential race condition in check_for_work * threadpool: do not create two threadpools if their params are identical * threadpool: reduce pause/resume/wakeup overhead in common cases We now start threadpool in paused state only if we have two. The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead. * threadpool: add support for hybrid polling poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var. poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ... The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms. We can tune this further as things evolve. * threadpool: reduce the number of barrier required New work is now indicated with an atomic counter that is incremented for each new graph that needs to be computed. This removes the need for extra barrier for clearing the "new_work" and removes the special case for trivial graphs. * threadpool: remove special-casing for disposable threadpools With the efficient hybrid polling there is no need to make disposable pools any different. This simplifies the overall logic and reduces branching. Include n_threads in debug print for disposable threadpool. Declare pause and stop flags as atomic_bool This doesn't actually generate any memory barriers and simply informs the thread sanitizer that these flags can be written & read by different threads without locking. * threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs) This fixes the race condition with very small graphs where the main thread happens to start a new graph while the workers are just about to exit from barriers. * threadpool: use relaxed order for chunk sync Full memory barrier is an overkill for this since each thread works on different chunk * threadpool: remove abort_callback from threadpool state * threadpool: better naming for thread/cpumask releated functions * threadpool: consistent use of int type for n_threads params * threadpool: add support for ggml_threadpool_params_default/init Also removes the need for explicit mask_specified param. all-zero cpumask means use default (usually inherited) cpu affinity mask. * threadpool: move typedef into ggml.h * threadpool: fix apply_priority() function name * threadpool: fix swift wrapper errors due to n_threads int type cleanup * threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled * threadpool: replace checks for compute_thread ret code with proper status check * threadpool: simplify threadpool init logic and fix main thread affinity application Most of the init code is now exactly the same between threadpool and openmp. * threadpool: update threadpool resume/pause function names * threadpool: enable openmp by default for now * threadpool: don't forget to free workers state when omp is enabled * threadpool: avoid updating process priority on the platforms that do not require it On Windows we need to change overall process priority class in order to set thread priorities, but on Linux, Mac, etc we do not need to touch the overall process settings. * threadpool: update calling thread prio and affinity only at start/resume This avoids extra syscalls for each graph_compute() * llama-bench: turn threadpool params into vectors, add output headers, etc * llama-bench: add support for cool off between tests --delay This helps for long running tests on platforms that are thermally limited (phones, laptops, etc). --delay (disabled by default) introduces the sleep for N seconds before starting each test. * threadpool: move process priority setting into the apps (bench and cli) This avoids changing the overall process priority on Windows for the apps that use ggml/llama.cpp directy. * threadpool: move all pause/resume logic into ggml * threadpool: futher api cleanup and prep for future refactoring All threadpool related functions and structs use ggml_threadpool prefix. * threadpool: minor indent fixes * threadpool: improve setprioty error message * Update examples/llama-bench/llama-bench.cpp Co-authored-by: slaren <slarengh@gmail.com> * threadpool: fix indent in set_threadpool call * use int32_t for n_thread type in public llama.cpp API * threadpool: use _new and _free instead of _create and _release * fix two more public APIs to use int32_t for n_threads * build: set _GNU_SOURCE for Adroid --------- Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com> Co-authored-by: fmz <quic_fzaghlou@quic.com> Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
2024-08-29 23:20:53 +00:00
}
llama_attach_threadpool(ctx, threadpool, threadpool_batch);
const int n_ctx_train = llama_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
if (n_ctx > n_ctx_train) {
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
}
// print chat template example in conversation mode
if (params.conversation) {
if (params.enable_chat_template) {
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(model, params.chat_template).c_str());
} else {
LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
}
}
2023-03-13 17:15:08 +00:00
// print system information
{
LOG_INF("\n");
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
LOG_INF("\n");
2023-03-13 17:15:08 +00:00
}
std::string path_session = params.path_prompt_cache;
std::vector<llama_token> session_tokens;
if (!path_session.empty()) {
LOG_INF("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
if (!file_exists(path_session)) {
LOG_INF("%s: session file does not exist, will create.\n", __func__);
} else if (file_is_empty(path_session)) {
LOG_INF("%s: The session file is empty. A new session will be initialized.\n", __func__);
} else {
// The file exists and is not empty
session_tokens.resize(n_ctx);
size_t n_token_count_out = 0;
if (!llama_state_load_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
LOG_ERR("%s: failed to load session file '%s'\n", __func__, path_session.c_str());
return 1;
}
session_tokens.resize(n_token_count_out);
LOG_INF("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
}
}
const bool add_bos = llama_add_bos_token(model);
if (!llama_model_has_encoder(model)) {
GGML_ASSERT(!llama_add_eos_token(model));
}
LOG_DBG("n_ctx: %d, add_bos: %d\n", n_ctx, add_bos);
llm : add Falcon support (#2717) * llama : refactor GGUF constants into static maps * llama : check if model architecture is known * llama : refactor llama_model_load_internal() * gguf : add KV constant maps * llm : read arch-specific KVs * convert : add dummy scores + types * falcon : load tensor data (CPU only) * llama : fix loading progress bar * llama : add arch member to llama_model * falcon : CPU inference working * falcon : support non-40B models * falcon : minor * llama : minor updates ggml-ci * convert-falcon-hf-to-gguf.py : fix special token mapping * llama.cpp : llama default UNK token = id 0 * llama.cpp : fix bpe tokenizer * llama.cpp : fix the fix of bpe tokenizer * ggml : pass eps to ggml_norm * metal : implement RoPE (mode = 2) + avoid ggml_repeat * ggml : ggml_repeat always creates new tensor * falcon : copy-paste self-attention from LLaMA * metal : print extra compute pipeline info * falcon : minor changes (still chasing the Metal problem) * llama.cpp : fix linefeed token * metal : fix GELU kernel numerical stability by using precise::tanh * metal : temporary workaround for the concurrency optimization bug * falcon : add CUDA offloading (#2739) * llama : better model naming and size reporting * llama : prep new tokenizer support * llama : advanced BPE tokenizer based on ggllm.cpp imlpementation * llama : remove oboslete comment ggml-ci * common : remove obsolete BPE API + disable test-tokenizer-1 * llama : revert BPE special-case in llama_byte_to_token() * cuda : add TODOs for RoPE NeoX implementation * llama : default special tokens based on vocab type * perplexity : add log for start of tokenization --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com>
2023-08-23 20:08:04 +00:00
std::vector<llama_token> embd_inp;
{
auto prompt = (params.conversation && params.enable_chat_template && !params.prompt.empty())
? chat_add_and_format(model, chat_msgs, "system", params.prompt) // format the system prompt in conversation mode
: params.prompt;
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
LOG_DBG("tokenize the prompt\n");
embd_inp = common_tokenize(ctx, prompt, true, true);
} else {
LOG_DBG("use session tokens\n");
embd_inp = session_tokens;
}
2023-03-10 18:40:58 +00:00
LOG_DBG("prompt: \"%s\"\n", prompt.c_str());
LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
}
// Should not run without any tokens
if (embd_inp.empty()) {
if (add_bos) {
embd_inp.push_back(llama_token_bos(model));
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
} else {
LOG_ERR("input is empty\n");
return -1;
}
}
// Tokenize negative prompt
if ((int) embd_inp.size() > n_ctx - 4) {
LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
return 1;
}
// debug message about similarity of saved session, if applicable
size_t n_matching_session_tokens = 0;
if (!session_tokens.empty()) {
for (llama_token id : session_tokens) {
if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
break;
}
n_matching_session_tokens++;
}
if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
LOG_INF("%s: using full prompt from session file\n", __func__);
} else if (n_matching_session_tokens >= embd_inp.size()) {
LOG_INF("%s: session file has exact match for prompt!\n", __func__);
} else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
LOG_WRN("%s: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
__func__, n_matching_session_tokens, embd_inp.size());
} else {
LOG_INF("%s: session file matches %zu / %zu tokens of prompt\n",
__func__, n_matching_session_tokens, embd_inp.size());
}
2023-10-11 20:55:08 +00:00
// remove any "future" tokens that we might have inherited from the previous session
llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1);
}
LOG_DBG("recalculate the cached logits (check): embd_inp.size() %zu, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu\n",
embd_inp.size(), n_matching_session_tokens, embd_inp.size(), session_tokens.size());
// if we will use the cache for the full prompt without reaching the end of the cache, force
// reevaluation of the last token to recalculate the cached logits
if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) {
LOG_DBG("recalculate the cached logits (do): session_tokens.resize( %zu )\n", embd_inp.size() - 1);
session_tokens.resize(embd_inp.size() - 1);
}
// number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
params.n_keep = (int)embd_inp.size();
} else {
params.n_keep += add_bos; // always keep the BOS token
}
2023-03-10 18:40:58 +00:00
if (params.conversation) {
params.interactive_first = true;
}
// enable interactive mode if interactive start is specified
if (params.interactive_first) {
params.interactive = true;
}
if (params.verbose_prompt) {
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
}
if (params.n_keep > add_bos) {
LOG_INF("%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) {
LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
}
LOG_CNT("'\n");
}
LOG_INF("\n");
2023-03-10 18:40:58 +00:00
}
// ctrl+C handling
{
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = sigint_handler;
sigemptyset (&sigint_action.sa_mask);
2023-03-13 17:15:08 +00:00
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
#elif defined (_WIN32)
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
};
gguf : new file format with flexible meta data (beta) (#2398) * gguf : first API pass * gguf : read header + meta data * gguf : read tensor info * gguf : initial model loading - not tested * gguf : add gguf_get_tensor_name() * gguf : do not support passing existing ggml_context to gguf_init * gguf : simplify gguf_get_val * gguf : gguf.c is now part of ggml.c * gguf : read / write sample models * gguf : add comments * refactor : reduce code duplication and better API (#2415) * gguf : expose the gguf_type enum through the API for now * gguf : add array support * gguf.py : some code style changes * convert.py : start a new simplified implementation by removing old stuff * convert.py : remove GGML vocab + other obsolete stuff * GGUF : write tensor (#2426) * WIP: Write tensor * GGUF : Support writing tensors in Python * refactor : rm unused import and upd todos * fix : fix errors upd writing example * rm example.gguf * gitignore *.gguf * undo formatting * gguf : add gguf_find_key (#2438) * gguf.cpp : find key example * ggml.h : add gguf_find_key * ggml.c : add gguf_find_key * gguf : fix writing tensors * gguf : do not hardcode tensor names to read * gguf : write sample tensors to read * gguf : add tokenization constants * quick and dirty conversion example * gguf : fix writing gguf arrays * gguf : write tensors one by one and code reuse * gguf : fix writing gguf arrays * gguf : write tensors one by one * gguf : write tensors one by one * gguf : write tokenizer data * gguf : upd gguf conversion script * Update convert-llama-h5-to-gguf.py * gguf : handle already encoded string * ggml.h : get array str and f32 * ggml.c : get arr str and f32 * gguf.py : support any type * Update convert-llama-h5-to-gguf.py * gguf : fix set is not subscriptable * gguf : update convert-llama-h5-to-gguf.py * constants.py : add layer norm eps * gguf.py : add layer norm eps and merges * ggml.h : increase GGML_MAX_NAME to 64 * ggml.c : add gguf_get_arr_n * Update convert-llama-h5-to-gguf.py * add gptneox gguf example * Makefile : add gptneox gguf example * Update convert-llama-h5-to-gguf.py * add gptneox gguf example * Update convert-llama-h5-to-gguf.py * Update convert-gptneox-h5-to-gguf.py * Update convert-gptneox-h5-to-gguf.py * Update convert-llama-h5-to-gguf.py * gguf : support custom alignment value * gguf : fix typo in function call * gguf : mmap tensor data example * fix : update convert-llama-h5-to-gguf.py * Update convert-llama-h5-to-gguf.py * convert-gptneox-h5-to-gguf.py : Special tokens * gptneox-main.cpp : special tokens * Update gptneox-main.cpp * constants.py : special tokens * gguf.py : accumulate kv and tensor info data + special tokens * convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens * gguf : gguf counterpart of llama-util.h * gguf-util.h : update note * convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens * convert-llama-h5-to-gguf.py : special tokens * Delete gptneox-common.cpp * Delete gptneox-common.h * convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer * gptneox-main.cpp : gpt2 bpe tokenizer * gpt2 bpe tokenizer (handles merges and unicode) * Makefile : remove gptneox-common * gguf.py : bytesarray for gpt2bpe tokenizer * cmpnct_gpt2bpe.hpp : comments * gguf.py : use custom alignment if present * gguf : minor stuff * Update gptneox-main.cpp * map tensor names * convert-gptneox-h5-to-gguf.py : map tensor names * convert-llama-h5-to-gguf.py : map tensor names * gptneox-main.cpp : map tensor names * gguf : start implementing libllama in GGUF (WIP) * gguf : start implementing libllama in GGUF (WIP) * rm binary commited by mistake * upd .gitignore * gguf : calculate n_mult * gguf : inference with 7B model working (WIP) * gguf : rm deprecated function * gguf : start implementing gguf_file_saver (WIP) * gguf : start implementing gguf_file_saver (WIP) * gguf : start implementing gguf_file_saver (WIP) * gguf : add gguf_get_kv_type * gguf : add gguf_get_kv_type * gguf : write metadata in gguf_file_saver (WIP) * gguf : write metadata in gguf_file_saver (WIP) * gguf : write metadata in gguf_file_saver * gguf : rm references to old file formats * gguf : shorter name for member variable * gguf : rm redundant method * gguf : get rid of n_mult, read n_ff from file * Update gguf_tensor_map.py * Update gptneox-main.cpp * gguf : rm references to old file magics * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : quantization is working * gguf : roper closing of file * gguf.py : no need to convert tensors twice * convert-gptneox-h5-to-gguf.py : no need to convert tensors twice * convert-llama-h5-to-gguf.py : no need to convert tensors twice * convert-gptneox-h5-to-gguf.py : simplify nbytes * convert-llama-h5-to-gguf.py : simplify nbytes * gptneox-main.cpp : n_layer --> n_block * constants.py : n_layer --> n_block * gguf.py : n_layer --> n_block * convert-gptneox-h5-to-gguf.py : n_layer --> n_block * convert-llama-h5-to-gguf.py : n_layer --> n_block * gptneox-main.cpp : n_layer --> n_block * Update gguf_tensor_map.py * convert-gptneox-h5-to-gguf.py : load model in parts to save memory * convert-llama-h5-to-gguf.py : load model in parts to save memory * convert : write more metadata for LLaMA * convert : rm quantization version * convert-gptneox-h5-to-gguf.py : add file_type key * gptneox-main.cpp : add file_type key * fix conflicts * gguf : add todos and comments * convert-gptneox-h5-to-gguf.py : tensor name map changes * Create gguf_namemap.py : tensor name map changes * Delete gguf_tensor_map.py * gptneox-main.cpp : tensor name map changes * convert-llama-h5-to-gguf.py : fixes * gguf.py : dont add empty strings * simple : minor style changes * gguf : use UNIX line ending * Create convert-llama-7b-pth-to-gguf.py * llama : sync gguf-llama.cpp with latest llama.cpp (#2608) * llama : sync gguf-llama.cpp with latest llama.cpp * minor : indentation + assert * llama : refactor gguf_buffer and gguf_ctx_buffer * llama : minor * gitignore : add gptneox-main * llama : tokenizer fixes (#2549) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * convert : update convert-new.py with tokenizer fixes (#2614) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * Adapt convert-new.py (and fix a clang-cl compiler error on windows) * llama : sync gguf-llama with llama (#2613) * llama : sync gguf-llama with llama * tests : fix build + warnings (test-tokenizer-1 still fails) * tests : fix wstring_convert * convert : fix layer names * llama : sync gguf-llama.cpp * convert : update HF converter to new tokenizer voodoo magics * llama : update tokenizer style * convert-llama-h5-to-gguf.py : add token types * constants.py : add token types * gguf.py : add token types * convert-llama-7b-pth-to-gguf.py : add token types * gguf-llama.cpp : fix n_head_kv * convert-llama-h5-to-gguf.py : add 70b gqa support * gguf.py : add tensor data layout * convert-llama-h5-to-gguf.py : add tensor data layout * convert-llama-7b-pth-to-gguf.py : add tensor data layout * gptneox-main.cpp : add tensor data layout * convert-llama-h5-to-gguf.py : clarify the reverse permute * llama : refactor model loading code (#2620) * llama : style formatting + remove helper methods * llama : fix quantization using gguf tool * llama : simplify gguf_file_saver * llama : fix method names * llama : simplify write_header() * llama : no need to pass full file loader to the file saver just gguf_ctx * llama : gguf_file_saver write I32 * llama : refactor tensor names (#2622) * gguf: update tensor names searched in quantization * gguf : define tensor names as constants * gguf : initial write API (not tested yet) * gguf : write to file API (not tested) * gguf : initial write API ready + example * gguf : fix header write * gguf : fixes + simplify example + add ggml_nbytes_pad() * gguf : minor * llama : replace gguf_file_saver with new gguf write API * gguf : streaming support when writing files * gguf : remove oboslete write methods * gguf : remove obosolete gguf_get_arr_xxx API * llama : simplify gguf_file_loader * llama : move hparams and vocab from gguf_file_loader to llama_model_loader * llama : merge gguf-util.h in llama.cpp * llama : reorder definitions in .cpp to match .h * llama : minor simplifications * llama : refactor llama_model_loader (WIP) wip : remove ggml_ctx from llama_model_loader wip : merge gguf_file_loader in llama_model_loader * llama : fix shape prints * llama : fix Windows build + fix norm_rms_eps key * llama : throw error on missing KV paris in model meta data * llama : improve printing + log meta data * llama : switch print order of meta data --------- Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com> * gguf : deduplicate (#2629) * gguf : better type names * dedup : CPU + Metal is working * ggml : fix warnings about unused results * llama.cpp : fix line feed and compiler warning * llama : fix strncpy warning + note token_to_str does not write null * llama : restore the original load/save session implementation Will migrate this to GGUF in the future * convert-llama-h5-to-gguf.py : support alt ctx param name * ggml : assert when using ggml_mul with non-F32 src1 * examples : dedup simple --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com> * gguf.py : merge all files in gguf.py * convert-new.py : pick #2427 for HF 70B support * examples/gguf : no need to keep q option for quantization any more * llama.cpp : print actual model size * llama.cpp : use ggml_elements() * convert-new.py : output gguf (#2635) * convert-new.py : output gguf (WIP) * convert-new.py : add gguf key-value pairs * llama : add hparams.ctx_train + no longer print ftype * convert-new.py : minor fixes * convert-new.py : vocab-only option should work now * llama : fix tokenizer to use llama_char_to_byte * tests : add new ggml-vocab-llama.gguf * convert-new.py : tensor name mapping * convert-new.py : add map for skipping tensor serialization * convert-new.py : convert script now works * gguf.py : pick some of the refactoring from #2644 * convert-new.py : minor fixes * convert.py : update to support GGUF output * Revert "ci : disable CI temporary to not waste energy" This reverts commit 7e82d25f40386540c2c15226300ad998ecd871ea. * convert.py : n_head_kv optional and .gguf file extension * convert.py : better always have n_head_kv and default it to n_head * llama : sync with recent PRs on master * editorconfig : ignore models folder ggml-ci * ci : update ".bin" to ".gguf" extension ggml-ci * llama : fix llama_model_loader memory leak * gptneox : move as a WIP example * llama : fix lambda capture ggml-ci * ggml : fix bug in gguf_set_kv ggml-ci * common.h : .bin --> .gguf * quantize-stats.cpp : .bin --> .gguf * convert.py : fix HF tensor permuting / unpacking ggml-ci * llama.cpp : typo * llama : throw error if gguf fails to init from file ggml-ci * llama : fix tensor name grepping during quantization ggml-ci * gguf.py : write tensors in a single pass (#2644) * gguf : single pass for writing tensors + refactoring writer * gguf : single pass for writing tensors + refactoring writer * gguf : single pass for writing tensors + refactoring writer * gguf : style fixes in simple conversion script * gguf : refactor gptneox conversion script * gguf : rename h5 to hf (for HuggingFace) * gguf : refactor pth to gguf conversion script * gguf : rm file_type key and method * gguf.py : fix vertical alignment * gguf.py : indentation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * convert-gptneox-hf-to-gguf.py : fixes * gguf.py : gptneox mapping * convert-llama-hf-to-gguf.py : fixes * convert-llama-7b-pth-to-gguf.py : fixes * ggml.h : reverse GGUF_MAGIC * gguf.py : reverse GGUF_MAGIC * test-tokenizer-0.cpp : fix warning * llama.cpp : print kv general.name * llama.cpp : get special token kv and linefeed token id * llama : print number of tensors per type + print arch + style * tests : update vocab file with new magic * editorconfig : fix whitespaces * llama : re-order functions * llama : remove C++ API + reorganize common source in /common dir * llama : minor API updates * llama : avoid hardcoded special tokens * llama : fix MPI build ggml-ci * llama : introduce enum llama_vocab_type + remove hardcoded string constants * convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested * falcon-main.cpp : falcon inference example * convert-falcon-hf-to-gguf.py : remove extra kv * convert-gptneox-hf-to-gguf.py : remove extra kv * convert-llama-7b-pth-to-gguf.py : remove extra kv * convert-llama-hf-to-gguf.py : remove extra kv * gguf.py : fix for falcon 40b * falcon-main.cpp : fix for falcon 40b * convert-falcon-hf-to-gguf.py : update ref * convert-falcon-hf-to-gguf.py : add tensor data layout * cmpnct_gpt2bpe.hpp : fixes * falcon-main.cpp : fixes * gptneox-main.cpp : fixes * cmpnct_gpt2bpe.hpp : remove non-general stuff * Update examples/server/README.md Co-authored-by: slaren <slarengh@gmail.com> * cmpnct_gpt2bpe.hpp : cleanup * convert-llama-hf-to-gguf.py : special tokens * convert-llama-7b-pth-to-gguf.py : special tokens * convert-permute-debug.py : permute debug print * convert-permute-debug-master.py : permute debug for master * convert-permute-debug.py : change permute type of attn_q * convert.py : 70b model working (change attn_q permute) * Delete convert-permute-debug-master.py * Delete convert-permute-debug.py * convert-llama-hf-to-gguf.py : fix attn_q permute * gguf.py : fix rope scale kv * convert-llama-hf-to-gguf.py : rope scale and added tokens * convert-llama-7b-pth-to-gguf.py : rope scale and added tokens * llama.cpp : use rope scale kv * convert-llama-7b-pth-to-gguf.py : rope scale fix * convert-llama-hf-to-gguf.py : rope scale fix * py : fix whitespace * gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682) * First pass at converting GGMLv3 LLaMA models to GGUF * Cleanups, better output during conversion * Fix vocab space conversion logic * More vocab conversion fixes * Add description to converted GGUF files * Improve help text, expand warning * Allow specifying name and description for output GGUF * Allow overriding vocab and hyperparams from original model metadata * Use correct params override var name * Fix wrong type size for Q8_K Better handling of original style metadata * Set default value for gguf add_tensor raw_shape KW arg * llama : improve token type support (#2668) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * Adapt convert-new.py (and fix a clang-cl compiler error on windows) * Improved tokenizer test But does it work on MacOS? * Improve token type support - Added @klosax code to convert.py - Improved token type support in vocabulary * Exclude platform dependent tests * More sentencepiece compatibility by eliminating magic numbers * Restored accidentally removed comment * llama : add API for token type ggml-ci * tests : use new tokenizer type API (#2692) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * Adapt convert-new.py (and fix a clang-cl compiler error on windows) * Improved tokenizer test But does it work on MacOS? * Improve token type support - Added @klosax code to convert.py - Improved token type support in vocabulary * Exclude platform dependent tests * More sentencepiece compatibility by eliminating magic numbers * Restored accidentally removed comment * Improve commentary * Use token type API in test-tokenizer-1.cpp * py : cosmetics * readme : add notice about new file format ggml-ci --------- Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com> Co-authored-by: klosax <131523366+klosax@users.noreply.github.com> Co-authored-by: goerch <jhr.walter@t-online.de> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
2023-08-21 20:07:43 +00:00
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
}
if (params.interactive) {
LOG_INF("%s: interactive mode on.\n", __func__);
if (!params.antiprompt.empty()) {
for (const auto & antiprompt : params.antiprompt) {
LOG_INF("Reverse prompt: '%s'\n", antiprompt.c_str());
if (params.verbose_prompt) {
auto tmp = common_tokenize(ctx, antiprompt, false, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
}
}
}
}
if (params.input_prefix_bos) {
LOG_INF("Input prefix with BOS\n");
}
if (!params.input_prefix.empty()) {
LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
if (params.verbose_prompt) {
auto tmp = common_tokenize(ctx, params.input_prefix, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
}
}
}
if (!params.input_suffix.empty()) {
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
if (params.verbose_prompt) {
auto tmp = common_tokenize(ctx, params.input_suffix, false, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
}
}
}
}
smpl = common_sampler_init(model, sparams);
if (!smpl) {
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
return 1;
}
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
// group-attention state
// number of grouped KV tokens so far (used only if params.grp_attn_n > 1)
int ga_i = 0;
const int ga_n = params.grp_attn_n;
const int ga_w = params.grp_attn_w;
if (ga_n != 1) {
GGML_ASSERT(ga_n > 0 && "grp_attn_n must be positive"); // NOLINT
GGML_ASSERT(ga_w % ga_n == 0 && "grp_attn_w must be a multiple of grp_attn_n"); // NOLINT
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of grp_attn_w"); // NOLINT
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * grp_attn_n"); // NOLINT
LOG_INF("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w);
}
LOG_INF("\n");
2023-03-10 18:40:58 +00:00
if (params.interactive) {
2024-05-23 06:43:24 +00:00
const char * control_message;
if (params.multiline_input) {
2024-05-23 06:43:24 +00:00
control_message = " - To return control to the AI, end your input with '\\'.\n"
" - To return control without starting a new line, end your input with '/'.\n";
} else {
2024-05-23 06:43:24 +00:00
control_message = " - Press Return to return control to the AI.\n"
" - To return control without starting a new line, end your input with '/'.\n"
" - If you want to submit another line, end your input with '\\'.\n";
}
LOG_INF("== Running in interactive mode. ==\n");
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
LOG_INF( " - Press Ctrl+C to interject at any time.\n");
#endif
LOG_INF( "%s\n", control_message);
is_interacting = params.interactive_first;
}
bool is_antiprompt = false;
bool input_echo = true;
bool display = true;
bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
int n_past = 0;
int n_remain = params.n_predict;
int n_consumed = 0;
int n_session_consumed = 0;
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
std::ostringstream output_ss; g_output_ss = &output_ss;
std::ostringstream assistant_ss; // for storing current assistant message, used in conversation mode
// the first thing we will do is to output the prompt, so set color accordingly
console::set_display(console::prompt);
display = params.display_prompt;
std::vector<llama_token> embd;
// tokenized antiprompts
std::vector<std::vector<llama_token>> antiprompt_ids;
antiprompt_ids.reserve(params.antiprompt.size());
for (const std::string & antiprompt : params.antiprompt) {
antiprompt_ids.emplace_back(::common_tokenize(ctx, antiprompt, false, true));
}
if (llama_model_has_encoder(model)) {
int enc_input_size = embd_inp.size();
llama_token * enc_input_buf = embd_inp.data();
if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size))) {
LOG_ERR("%s : failed to eval\n", __func__);
return 1;
}
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
if (decoder_start_token_id == -1) {
decoder_start_token_id = llama_token_bos(model);
}
embd_inp.clear();
embd_inp.push_back(decoder_start_token_id);
}
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
2023-03-10 18:40:58 +00:00
// predict
if (!embd.empty()) {
// Note: (n_ctx - 4) here is to match the logic for commandline prompt handling via
// --prompt or --file which uses the same value.
int max_embd_size = n_ctx - 4;
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
if ((int) embd.size() > max_embd_size) {
const int skipped_tokens = (int) embd.size() - max_embd_size;
embd.resize(max_embd_size);
console::set_display(console::error);
LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
console::set_display(console::reset);
}
if (ga_n == 1) {
// infinite text generation via context shifting
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int) embd.size() >= n_ctx) {
if (!params.ctx_shift){
LOG_DBG("\n\n%s: context full and context shift is disabled => stopping\n", __func__);
break;
}
if (params.n_predict == -2) {
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
break;
}
const int n_left = n_past - params.n_keep;
const int n_discard = n_left/2;
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
llama : custom attention mask + parallel decoding + no context swaps (#3228) * tests : verify that RoPE is "additive" * llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask) * ggml : ggml_rope now takes a vector with positions instead of n_past * metal : add rope_f16 kernel + optimize cpy kernels * llama : unified KV cache + batch inference API * llama : add new llama_decode() API that works with llama_batch * llama : add cell_max heuristic for more efficient kv_cache * llama : extend llama_kv_cache API * llama : more robust cell_max heuristic + wip shift * metal : disable concurrency optimization * llama : add llama_kv_cache_shift_seq + no more context swaps * llama : apply K-cache roping for Falcon and Baichuan * speculative : fix KV cache management * parallel : example for serving multiple users in parallel * parallel : disable hot-plug to avoid cache fragmentation * fixes : speculative KV cache + llama worst-case graph * llama : extend batch API to select which logits to output * llama : fix worst case graph build * ggml-cuda : update rope implementation for parallel decoding (#3254) * ggml-cuda : update rope implementation for parallel decoding * better solution for p0 computation * fix rope * simpler rope implementation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * make : add parallel to build + fix static functions in llama.cpp * simple : fix token counting * parallel : various improvements * llama : fix cell_max logic + rename functions * parallel : try smaller batches when the KV cache is fragmented * parallel : fix sequence termination criteria * llama : silence errors KV cache errors * parallel : remove new line from prompt * parallel : process system prompt once + configurable paramters + llama API * parallel : remove question with short answers * parallel : count cache misses * parallel : print misses on each request * parallel : minor * llama : fix n_kv to never become 0 * parallel : rename hot-plug to continuous-batching * llama : improve llama_batch API + simplify parallel example * simple : add parallel decoding support * simple : improve comments + free batch * ggml-cuda : add rope f16, restore performance with parallel decoding (#3272) * ggml-cuda : add rope f16, restore performance * offload KQ_mask with all models * fix rope shift --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : disable MPI for now ggml-ci * train : make KQ_pos memory buffer permanent via dummy scale op * ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275) ggml-ci * parallel : fix bug (extra BOS) + smaller token_prev array * parallel : fix cases where the input prompts can overflow the batch * parallel : add disabled experimental batch chunking in powers of two * llama : llama.h formatting + comments * simple : add README.md * llama : fix kv cache heuristic when context is less than 32 * parallel : fix crash when `-n -1` * llama : simplify returns if/else branches * metal : use mm kernels for batch size > 2 * examples : utilize new llama_get_logits_ith() * examples : add example for batched decoding * examples : do not eval prompt 2 times (close #3348) * server : clear the KV cache beyond n_past before llama_decode * server : avoid context swaps by shifting the KV cache --------- Co-authored-by: slaren <slarengh@gmail.com>
2023-09-28 16:04:36 +00:00
n_past -= n_discard;
LOG_DBG("after swap: n_past = %d\n", n_past);
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
LOG_DBG("clear session path\n");
path_session.clear();
llama : custom attention mask + parallel decoding + no context swaps (#3228) * tests : verify that RoPE is "additive" * llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask) * ggml : ggml_rope now takes a vector with positions instead of n_past * metal : add rope_f16 kernel + optimize cpy kernels * llama : unified KV cache + batch inference API * llama : add new llama_decode() API that works with llama_batch * llama : add cell_max heuristic for more efficient kv_cache * llama : extend llama_kv_cache API * llama : more robust cell_max heuristic + wip shift * metal : disable concurrency optimization * llama : add llama_kv_cache_shift_seq + no more context swaps * llama : apply K-cache roping for Falcon and Baichuan * speculative : fix KV cache management * parallel : example for serving multiple users in parallel * parallel : disable hot-plug to avoid cache fragmentation * fixes : speculative KV cache + llama worst-case graph * llama : extend batch API to select which logits to output * llama : fix worst case graph build * ggml-cuda : update rope implementation for parallel decoding (#3254) * ggml-cuda : update rope implementation for parallel decoding * better solution for p0 computation * fix rope * simpler rope implementation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * make : add parallel to build + fix static functions in llama.cpp * simple : fix token counting * parallel : various improvements * llama : fix cell_max logic + rename functions * parallel : try smaller batches when the KV cache is fragmented * parallel : fix sequence termination criteria * llama : silence errors KV cache errors * parallel : remove new line from prompt * parallel : process system prompt once + configurable paramters + llama API * parallel : remove question with short answers * parallel : count cache misses * parallel : print misses on each request * parallel : minor * llama : fix n_kv to never become 0 * parallel : rename hot-plug to continuous-batching * llama : improve llama_batch API + simplify parallel example * simple : add parallel decoding support * simple : improve comments + free batch * ggml-cuda : add rope f16, restore performance with parallel decoding (#3272) * ggml-cuda : add rope f16, restore performance * offload KQ_mask with all models * fix rope shift --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : disable MPI for now ggml-ci * train : make KQ_pos memory buffer permanent via dummy scale op * ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275) ggml-ci * parallel : fix bug (extra BOS) + smaller token_prev array * parallel : fix cases where the input prompts can overflow the batch * parallel : add disabled experimental batch chunking in powers of two * llama : llama.h formatting + comments * simple : add README.md * llama : fix kv cache heuristic when context is less than 32 * parallel : fix crash when `-n -1` * llama : simplify returns if/else branches * metal : use mm kernels for batch size > 2 * examples : utilize new llama_get_logits_ith() * examples : add example for batched decoding * examples : do not eval prompt 2 times (close #3348) * server : clear the KV cache beyond n_past before llama_decode * server : avoid context swaps by shifting the KV cache --------- Co-authored-by: slaren <slarengh@gmail.com>
2023-09-28 16:04:36 +00:00
}
} else {
// context extension via Self-Extend
while (n_past >= ga_i + ga_w) {
const int ib = (ga_n*ga_i)/ga_w;
const int bd = (ga_w/ga_n)*(ga_n - 1);
const int dd = (ga_w/ga_n) - ib*bd - ga_w;
llama : custom attention mask + parallel decoding + no context swaps (#3228) * tests : verify that RoPE is "additive" * llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask) * ggml : ggml_rope now takes a vector with positions instead of n_past * metal : add rope_f16 kernel + optimize cpy kernels * llama : unified KV cache + batch inference API * llama : add new llama_decode() API that works with llama_batch * llama : add cell_max heuristic for more efficient kv_cache * llama : extend llama_kv_cache API * llama : more robust cell_max heuristic + wip shift * metal : disable concurrency optimization * llama : add llama_kv_cache_shift_seq + no more context swaps * llama : apply K-cache roping for Falcon and Baichuan * speculative : fix KV cache management * parallel : example for serving multiple users in parallel * parallel : disable hot-plug to avoid cache fragmentation * fixes : speculative KV cache + llama worst-case graph * llama : extend batch API to select which logits to output * llama : fix worst case graph build * ggml-cuda : update rope implementation for parallel decoding (#3254) * ggml-cuda : update rope implementation for parallel decoding * better solution for p0 computation * fix rope * simpler rope implementation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * make : add parallel to build + fix static functions in llama.cpp * simple : fix token counting * parallel : various improvements * llama : fix cell_max logic + rename functions * parallel : try smaller batches when the KV cache is fragmented * parallel : fix sequence termination criteria * llama : silence errors KV cache errors * parallel : remove new line from prompt * parallel : process system prompt once + configurable paramters + llama API * parallel : remove question with short answers * parallel : count cache misses * parallel : print misses on each request * parallel : minor * llama : fix n_kv to never become 0 * parallel : rename hot-plug to continuous-batching * llama : improve llama_batch API + simplify parallel example * simple : add parallel decoding support * simple : improve comments + free batch * ggml-cuda : add rope f16, restore performance with parallel decoding (#3272) * ggml-cuda : add rope f16, restore performance * offload KQ_mask with all models * fix rope shift --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : disable MPI for now ggml-ci * train : make KQ_pos memory buffer permanent via dummy scale op * ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275) ggml-ci * parallel : fix bug (extra BOS) + smaller token_prev array * parallel : fix cases where the input prompts can overflow the batch * parallel : add disabled experimental batch chunking in powers of two * llama : llama.h formatting + comments * simple : add README.md * llama : fix kv cache heuristic when context is less than 32 * parallel : fix crash when `-n -1` * llama : simplify returns if/else branches * metal : use mm kernels for batch size > 2 * examples : utilize new llama_get_logits_ith() * examples : add example for batched decoding * examples : do not eval prompt 2 times (close #3348) * server : clear the KV cache beyond n_past before llama_decode * server : avoid context swaps by shifting the KV cache --------- Co-authored-by: slaren <slarengh@gmail.com>
2023-09-28 16:04:36 +00:00
LOG_DBG("\n");
LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd);
LOG_DBG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd);
llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
n_past -= bd;
ga_i += ga_w/ga_n;
LOG_DBG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i);
}
}
// try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
if (n_session_consumed < (int) session_tokens.size()) {
size_t i = 0;
for ( ; i < embd.size(); i++) {
if (embd[i] != session_tokens[n_session_consumed]) {
session_tokens.resize(n_session_consumed);
break;
}
n_past++;
n_session_consumed++;
if (n_session_consumed >= (int) session_tokens.size()) {
++i;
break;
}
}
if (i > 0) {
embd.erase(embd.begin(), embd.begin() + i);
}
}
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
int n_eval = (int) embd.size() - i;
if (n_eval > params.n_batch) {
n_eval = params.n_batch;
}
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
LOG_ERR("%s : failed to eval\n", __func__);
return 1;
}
n_past += n_eval;
LOG_DBG("n_past = %d\n", n_past);
// Display total tokens alongside total time
if (params.n_print > 0 && n_past % params.n_print == 0) {
LOG_DBG("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx);
}
2023-03-10 18:40:58 +00:00
}
if (!embd.empty() && !path_session.empty()) {
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
n_session_consumed = session_tokens.size();
}
2023-03-10 18:40:58 +00:00
}
embd.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
// optionally save the session on first sample (for faster prompt loading next time)
if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
need_to_save_session = false;
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
LOG_DBG("saved session to %s\n", path_session.c_str());
}
const llama_token id = common_sampler_sample(smpl, ctx, -1);
common_sampler_accept(smpl, id, /* accept_grammar= */ true);
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
2023-03-10 18:40:58 +00:00
embd.push_back(id);
// echo this to console
input_echo = true;
// decrement remaining sampling budget
--n_remain;
LOG_DBG("n_remain: %d\n", n_remain);
2023-03-10 18:40:58 +00:00
} else {
// some user input remains from prompt or interaction, forward it to processing
LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
while ((int) embd_inp.size() > n_consumed) {
embd.push_back(embd_inp[n_consumed]);
// push the prompt in the sampling context in order to apply repetition penalties later
// for the prompt, we don't apply grammar rules
common_sampler_accept(smpl, embd_inp[n_consumed], /* accept_grammar= */ false);
++n_consumed;
2023-03-19 17:46:32 +00:00
if ((int) embd.size() >= params.n_batch) {
2023-03-10 18:40:58 +00:00
break;
}
}
}
// display text
if (input_echo && display) {
for (auto id : embd) {
const std::string token_str = common_token_to_piece(ctx, id, params.special);
// Console/Stream Output
LOG("%s", token_str.c_str());
// Record Displayed Tokens To Log
// Note: Generated tokens are created one by one hence this check
if (embd.size() > 1) {
// Incoming Requested Tokens
input_tokens.push_back(id);
} else {
// Outgoing Generated Tokens
output_tokens.push_back(id);
output_ss << token_str;
}
}
}
// reset color to default if there is no pending user input
if (input_echo && (int) embd_inp.size() == n_consumed) {
console::set_display(console::reset);
display = true;
}
// if not currently processing queued inputs;
if ((int) embd_inp.size() <= n_consumed) {
// check for reverse prompt in the last n_prev tokens
if (!params.antiprompt.empty()) {
const int n_prev = 32;
const std::string last_output = common_sampler_prev_str(smpl, ctx, n_prev);
is_antiprompt = false;
// Check if each of the reverse prompts appears at the end of the output.
// If we're not running interactively, the reverse prompt might be tokenized with some following characters
// so we'll compensate for that by widening the search window a bit.
for (std::string & antiprompt : params.antiprompt) {
size_t extra_padding = params.interactive ? 0 : 2;
size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
: 0;
if (last_output.find(antiprompt, search_start_pos) != std::string::npos) {
if (params.interactive) {
is_interacting = true;
}
is_antiprompt = true;
break;
}
}
// check for reverse prompt using special tokens
llama_token last_token = common_sampler_last(smpl);
for (std::vector<llama_token> ids : antiprompt_ids) {
if (ids.size() == 1 && last_token == ids[0]) {
if (params.interactive) {
is_interacting = true;
}
is_antiprompt = true;
break;
}
}
if (is_antiprompt) {
LOG_DBG("found antiprompt: %s\n", last_output.c_str());
}
}
// deal with end of generation tokens in interactive mode
if (llama_token_is_eog(model, common_sampler_last(smpl))) {
LOG_DBG("found an EOG token\n");
if (params.interactive) {
if (!params.antiprompt.empty()) {
// tokenize and inject first reverse prompt
const auto first_antiprompt = common_tokenize(ctx, params.antiprompt.front(), false, true);
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
is_antiprompt = true;
}
if (params.enable_chat_template) {
chat_add_and_format(model, chat_msgs, "assistant", assistant_ss.str());
}
is_interacting = true;
LOG("\n");
}
}
// if current token is not EOG, we add it to current assistant message
if (params.conversation) {
const auto id = common_sampler_last(smpl);
assistant_ss << common_token_to_piece(ctx, id, false);
}
if (n_past > 0 && is_interacting) {
LOG_DBG("waiting for user input\n");
if (params.conversation) {
LOG("\n> ");
}
if (params.input_prefix_bos) {
LOG_DBG("adding input prefix BOS token\n");
embd_inp.push_back(llama_token_bos(model));
}
std::string buffer;
if (!params.input_prefix.empty() && !params.conversation) {
LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
LOG("%s", params.input_prefix.c_str());
}
// color user input only
console::set_display(console::user_input);
display = params.display_prompt;
std::string line;
bool another_line = true;
do {
another_line = console::readline(line, params.multiline_input);
buffer += line;
} while (another_line);
// done taking input, reset color
console::set_display(console::reset);
display = true;
// Add tokens to embd only if the input buffer is non-empty
// Entering a empty line lets the user pass control back
if (buffer.length() > 1) {
// append input suffix if any
if (!params.input_suffix.empty() && !params.conversation) {
LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
LOG("%s", params.input_suffix.c_str());
}
2023-03-12 23:35:51 +00:00
LOG_DBG("buffer: '%s'\n", buffer.c_str());
const size_t original_size = embd_inp.size();
if (params.escape) {
string_process_escapes(buffer);
}
bool format_chat = params.conversation && params.enable_chat_template;
std::string user_inp = format_chat
? chat_add_and_format(model, chat_msgs, "user", std::move(buffer))
: std::move(buffer);
// TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix)
const auto line_pfx = common_tokenize(ctx, params.input_prefix, false, true);
const auto line_inp = common_tokenize(ctx, user_inp, false, format_chat);
const auto line_sfx = common_tokenize(ctx, params.input_suffix, false, true);
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
// if user stop generation mid-way, we must add EOT to finish model's last response
if (need_insert_eot && format_chat) {
llama_token eot = llama_token_eot(model);
embd_inp.push_back(eot == -1 ? llama_token_eos(model) : eot);
need_insert_eot = false;
}
embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end());
for (size_t i = original_size; i < embd_inp.size(); ++i) {
const llama_token token = embd_inp[i];
output_tokens.push_back(token);
output_ss << common_token_to_piece(ctx, token);
}
// reset assistant message
assistant_ss.str("");
n_remain -= line_inp.size();
LOG_DBG("n_remain: %d\n", n_remain);
} else {
LOG_DBG("empty line, passing control back\n");
}
input_echo = false; // do not echo this again
}
if (n_past > 0) {
if (is_interacting) {
common_sampler_reset(smpl);
}
is_interacting = false;
}
2023-03-10 18:40:58 +00:00
}
// end of generation
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.interactive)) {
LOG(" [end of text]\n");
break;
2023-03-10 18:40:58 +00:00
}
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
n_remain = params.n_predict;
is_interacting = true;
}
2023-03-10 18:40:58 +00:00
}
if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
LOG("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
}
LOG("\n\n");
common_perf_print(ctx, smpl);
common_sampler_free(smpl);
llama_backend_free();
ggml_threadpool_free_fn(threadpool);
ggml_threadpool_free_fn(threadpool_batch);
Threadpool: take 2 (#8672) * Introduce ggml_compute_threadpool - OpenMP functional: check - Vanilla ggml functional: Check - ggml w/threadpool functional: Check - OpenMP no regression: No glaring problems - Vanilla ggml no regression: No glaring problems - ggml w/threadpool no regression: No glaring problems * Minor fixes * fixed use after release bug * fixed a harmless race condition * Fix Android bulid issue * fix more race conditions * fix deadlock for cases where cgraph.n_nodes == 1 and fix --poll case * threadpool: use cpu_get_num_math to set the default number of threadpool threads This way we avoid using E-Cores and Hyperthreaded siblings. * bench: create fresh threadpool for each test For benchmarking it's better to start a fresh pool for each test with the exact number of threads needed for that test. Having larger pools is suboptimal (causes more load, etc). * atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior. * threadpool: make polling the default to match openmp behavior All command line args now allow for setting poll to 0 (false). * threadpool: do not wakeup threads in already paused threadpool * fix potential race condition in check_for_work * threadpool: do not create two threadpools if their params are identical * threadpool: reduce pause/resume/wakeup overhead in common cases We now start threadpool in paused state only if we have two. The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead. * threadpool: add support for hybrid polling poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var. poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ... The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms. We can tune this further as things evolve. * threadpool: reduce the number of barrier required New work is now indicated with an atomic counter that is incremented for each new graph that needs to be computed. This removes the need for extra barrier for clearing the "new_work" and removes the special case for trivial graphs. * threadpool: remove special-casing for disposable threadpools With the efficient hybrid polling there is no need to make disposable pools any different. This simplifies the overall logic and reduces branching. Include n_threads in debug print for disposable threadpool. Declare pause and stop flags as atomic_bool This doesn't actually generate any memory barriers and simply informs the thread sanitizer that these flags can be written & read by different threads without locking. * threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs) This fixes the race condition with very small graphs where the main thread happens to start a new graph while the workers are just about to exit from barriers. * threadpool: use relaxed order for chunk sync Full memory barrier is an overkill for this since each thread works on different chunk * threadpool: remove abort_callback from threadpool state * threadpool: better naming for thread/cpumask releated functions * threadpool: consistent use of int type for n_threads params * threadpool: add support for ggml_threadpool_params_default/init Also removes the need for explicit mask_specified param. all-zero cpumask means use default (usually inherited) cpu affinity mask. * threadpool: move typedef into ggml.h * threadpool: fix apply_priority() function name * threadpool: fix swift wrapper errors due to n_threads int type cleanup * threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled * threadpool: replace checks for compute_thread ret code with proper status check * threadpool: simplify threadpool init logic and fix main thread affinity application Most of the init code is now exactly the same between threadpool and openmp. * threadpool: update threadpool resume/pause function names * threadpool: enable openmp by default for now * threadpool: don't forget to free workers state when omp is enabled * threadpool: avoid updating process priority on the platforms that do not require it On Windows we need to change overall process priority class in order to set thread priorities, but on Linux, Mac, etc we do not need to touch the overall process settings. * threadpool: update calling thread prio and affinity only at start/resume This avoids extra syscalls for each graph_compute() * llama-bench: turn threadpool params into vectors, add output headers, etc * llama-bench: add support for cool off between tests --delay This helps for long running tests on platforms that are thermally limited (phones, laptops, etc). --delay (disabled by default) introduces the sleep for N seconds before starting each test. * threadpool: move process priority setting into the apps (bench and cli) This avoids changing the overall process priority on Windows for the apps that use ggml/llama.cpp directy. * threadpool: move all pause/resume logic into ggml * threadpool: futher api cleanup and prep for future refactoring All threadpool related functions and structs use ggml_threadpool prefix. * threadpool: minor indent fixes * threadpool: improve setprioty error message * Update examples/llama-bench/llama-bench.cpp Co-authored-by: slaren <slarengh@gmail.com> * threadpool: fix indent in set_threadpool call * use int32_t for n_thread type in public llama.cpp API * threadpool: use _new and _free instead of _create and _release * fix two more public APIs to use int32_t for n_threads * build: set _GNU_SOURCE for Adroid --------- Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com> Co-authored-by: fmz <quic_fzaghlou@quic.com> Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
2024-08-29 23:20:53 +00:00
2023-03-10 18:40:58 +00:00
return 0;
}