* add cmake build toggle to enable ssl support in server
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* add flags for ssl key/cert files and use SSLServer if set
All SSL setup is hidden behind CPPHTTPLIB_OPENSSL_SUPPORT in the same
way that the base httlib hides the SSL support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* Update readme for SSL support in server
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* Add LLAMA_SERVER_SSL variable setup to top-level Makefile
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* mamba : begin working on support for Mamba SSM
* mamba : begin figuring out how to (ab)use the kv cache for Mamba
* mamba : recurrent inference almost works, but incoherent
* mamba : recurrent inference WORKS!!!
* convert : optionally use d_conv and d_state from config.json for Mamba
* mamba : refactor recurrent conv, resulting in 20% perf increase
It's still slower than I'd like, but I did not really optimize `ggml_exp` yet.
I also refactored `ggml_exp` to work with tensors with more than 2 dimensions.
* ggml : parallelize ggml_exp
This results in 8% faster token generation for Mamba-130M.
* mamba : simplify the conv step with a self-overlapping view
Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.
Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.
Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).
* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32
Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.
* mamba : fix self-overlapping view depth stride
* mamba : handle batches of more than 1 token
This means running Mamba no longer crashes when using the default settings!
And probably also slightly faster prompt processing.
Both batched and non-batched processing yield the same output.
Previously, the state was not cleared when starting a sequence.
Next step is to make the KV cache API work as expected for Mamba models.
* ggml: add ggml_ssm_scan to help with parallel selective scan
If the selective scan was implemented without a custom operator,
there would be waaay too many nodes in the graph. For example,
for Mamba-130M, with a batch size of 512 (the default),
a naive selective scan could add at least 24*512=12288 nodes,
which is more than LLAMA_MAX_NODES (8192),
and that's only for the smallest Mamba model.
So it's much cleaner with a custom operator.
Not sure about the name, though.
* ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation
This will help with performance on CPU if ggml_vec_mul_f32
and ggml_vec_add_f32 are ever optimized with SIMD.
* mamba : very basic quantization support
Mostly works, but there is currently no difference
between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same).
Most of the SSM-specific weights can be kept in f32 without affecting
the size that much, since they are relatively small.
(the linear projection weights are responsible for most of Mamba's size)
Too much quantization seems to make the state degrade quite fast, and
the model begins to output gibberish.
It seems to affect bigger models to a lesser extent than small models,
but I'm not sure by how much.
Experimentation will be needed to figure out which weights are more important
for the _M (and _L?) variants of k-quants for Mamba.
* convert : fix wrong name for layer norm weight of offical Mamba models
I was using Q-bert/Mamba-* models before, which have a slighlty different
naming scheme for the weights.
(they start with "model.layers" instead of "backbone.layers")
* mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator
This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.
However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.
* convert : for Mamba, also consider the "MambaLMHeadModel" arch name
It's the name of the class of the official implementation,
though they don't use it (yet) in the "architectures" field of config.json
* mamba : fix vocab size problems with official models
The perplexity was waaaay to high for models with a non-round vocab size.
Not sure why, but it needed to be fixed in the metadata.
Note that this breaks existing GGUF-converted Mamba models,
but **only if** the vocab size was not already rounded.
* ggml : remove ggml_exp and ggml_soft_plus
They did not exist anyway outside of this branch,
and since ggml_ssm_scan fused operations together, they are unused.
It's always possible to bring them back if needed.
* mamba : remove some useless comments
No code change.
* convert : fix flake8 linter errors
* mamba : apply suggestions from code review
* mamba : remove unecessary branch for row-wise ssm_state and C multiplication
It was previously done to avoid permuting when only one token is processed
at a time (like when generating text), but permuting is cheap,
and dynamically changing the compute graph is not future-proof.
* ggml : in ggml_ssm_scan, use more appropriate asserts
* ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32
* mamba : multiple sequences, but one at a time
This is a step towards making this Mamba implementation usable
with the server example (the way the system prompt is kept when clearing
the client slots will need to be changed before this can work, though).
The KV cache size for this kind of model is tied to the maximum number
of sequences kept at any single time.
For now, this number is obtained from n_parallel (plus one,
to have an extra sequence to dedicate to the system prompt),
but there might be a better way to do this which won't also
make the main example use 2 cells even if only 1 is really used.
(for this specific case, --parallel 0 helps)
Simultaneous sequence processing will probably require changes to
ggml_ssm_scan, and possibly a new operator for the conv step.
* mamba : support llama_kv_cache_seq_cp
This (mis)uses the logic around K shifts, because tokens in a state
can't be shifted anyway, and because inp_K_shift has the right shape and type.
Using ggml_get_rows is a nice way to do copies, but copy chains can't work.
Fortunately, copy chains don't really seem to be used in the examples.
Each KV cell is dedicated to the sequence ID corresponding to its own index.
* mamba : use a state mask
It's cleaner than the previous heuristic of
checking for the pos of the first token in the batch.
inp_KQ_mask could not be re-used for this, because it has the wrong shape
and because it seems more suited to the next step of
simultaneous sequence processing (helping with the problem of
remembering which token belongs to which sequence(s)/state(s)).
* llama : replace the usage of n_ctx with kv_self.size in many places
* mamba : use n_tokens directly instead of n_tok
* mamba : in comments, properly refer to KV cells instead of slots
* mamba : reduce memory usage of ggml_ssm_scan
From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.
The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.
* mamba : simultaneous sequence processing
A batch can now contain tokens from multiple sequences.
This is necessary for at least the parallel example, the server example,
and the HellaSwag test in the perplexity example.
However, for this to be useful, uses of llama_kv_cache_seq_rm/cp
will need to be changed to work on whole sequences.
* ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba
This operator makes it possible to use and update the correct states
for each token of the batch in the same way as ggml_ssm_scan.
Other solutions which use existing operators would need loops which would
add too many nodes to the graph (at least the ones I thought of).
Using this operator further reduces the size of the CPU compute buffer
from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512.
And (at least on CPU), it's a bit faster than before.
Note that "ggml_ssm_conv" is probably not the most appropriate name,
and it could be changed if a better one is found.
* llama : add inp_s_seq as a new input tensor
The most convenient implementation to select the correct state (for Mamba)
for each token is to directly get the correct index from a tensor.
This is why inp_s_seq is storing int32_t and not floats.
The other, less convenient way to select the correct state would be
to have inp_KQ_mask contain 1.0f for each state used by a token
and 0.0f otherwise. This complicates quickly fetching the first used
state of a token, and is also less efficient because a whole row
of the mask would always need to be read for each token.
Using indexes makes it easy to stop searching when there are
no more sequences for a token, and the first sequence assigned
is always very quickly available (it's the first element of each row).
* mamba : support llama_kv_cache_seq_cp copy chains
* mamba : support shifting and dividing the kv cache pos
* mamba : make the server and parallel examples work with whole sequences
A seq_id is dedicated to the system prompt in both cases.
* llama : make llama_kv_cache_seq_rm return whether it succeeded or not
* mamba : dedicate an input tensor for state copy indices
This is cleaner and makes it easier to adapt when/if token positions
(and by extension, inp_K_shift) are no longer integers.
* mamba : adapt perplexity, batched, and batched-bench examples
* perplexity : limit the max number of sequences
This adapts to what the loaded model can provide.
* llama : add llama_n_max_seq to get the upper limit for seq_ids
Used by the perplexity example.
* batched : pass n_parallel to the model's context params
This should have been there already, but it wasn't.
* batched-bench : reserve sequences to support Mamba
* batched-bench : fix tokens being put in wrong sequences
Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.
* mamba : stop abusing attention metadata
This breaks existing converted-to-GGUF Mamba models,
but will allow supporting mixed architectures like MambaFormer
without needing to break Mamba models.
This will also allow changing the size of Mamba's states
without having to reconvert models in the future.
(e.g. using something else than d_conv - 1 columns for the conv_states
will not require breaking existing converted Mamba models again)
* gguf-py : add new KV metadata key-value pairs for Mamba
* llama : add new metadata key-value pairs for Mamba
* llama : guard against divisions by zero when n_head is 0
* mamba : rename "unlimited" KV cache property to "recurrent"
* mamba : more correctly update the "used" field of the KV cache
* ggml : in ggml_ssm_scan, use a threshold for soft_plus
This is how the official Mamba implementation does it,
and it's also what torch.nn.Softplus does.
* convert : for Mamba, fallback to internal NeoX tokenizer
The resulting models are exactly the same
as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there.
* mamba : support state saving and restoring
* ggml : implicitly pass src tensors through dst for Mamba-related ops
* mamba : clarify some comments
* server : fix cache_tokens not getting correctly resized
Otherwise, when the "we have to evaluate at least 1 token" special case
was triggered, an extra token was kept in cache_tokens even if it was
removed from the KV cache.
For Mamba, this caused useless prompt reprocessing when the previous
request triggered the above case.
* convert-hf : support new metadata keys for Mamba
For the models available at
https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406
* mamba : rename metadata to be more similar to transformers library
This breaks existing converted-to-GGUF models,
but the metadata names are more "standard".
* mamba : support mamba-*-hf models
These models share their token_embd.weight with their output.weight
* mamba : add missing spaces
This is purely a formatting change.
* convert-hf : omit output.weight when identical with token_embd.weight
Only for Mamba for now, but it might be relevant for other models eventually.
Most Mamba models actually share these two tensors, albeit implicitly.
* readme : add Mamba to supported models, and add recent API changes
* mamba : move state_seq and state_mask views outside layer loop
A few tensors were also missing `struct` in front of `ggml_tensor`.
* server : refactoring (wip)
* server : remove llava/clip objects from build
* server : fix empty prompt handling + all slots idle logic
* server : normalize id vars
* server : code style
* server : simplify model chat template validation
* server : code style
* server : minor
* llama : llama_chat_apply_template support null buf
* server : do not process embedding requests when disabled
* server : reorganize structs and enums + naming fixes
* server : merge oai.hpp in utils.hpp
* server : refactor system prompt update at start
* server : disable cached prompts with self-extend
* server : do not process more than n_batch tokens per iter
* server: tests: embeddings use a real embeddings model (#5908)
* server, tests : bump batch to fit 1 embedding prompt
* server: tests: embeddings fix build type Debug is randomly failing (#5911)
* server: tests: embeddings, use different KV Cache size
* server: tests: embeddings, fixed prompt do not exceed n_batch, increase embedding timeout, reduce number of concurrent embeddings
* server: tests: embeddings, no need to wait for server idle as it can timout
* server: refactor: clean up http code (#5912)
* server : avoid n_available var
ggml-ci
* server: refactor: better http codes
* server : simplify json parsing + add comment about t_last
* server : rename server structs
* server : allow to override FQDN in tests
ggml-ci
* server : add comments
---------
Co-authored-by: Pierrick Hymbert <pierrick.hymbert@gmail.com>
* (WIP) Implement stochastic speculative decoding
* sample from residual distribution on draft accept failure
* fix#5657: force greedy sampling with probs when temp is 0
* remove p_accept parameter
* fix style
* remove unused variables
* add srand() in speculative.cpp
* replace use of rand() with mt19937 sampling
* fixes based on review (@JohannesGaessler)
* fix r random generation
* randomly select next sequence to verify + fix bug in memory freeing
* fix bug in active_seqs sync
* fix uniform int distribution initialization
* remove warnings from comparison between int and size_t
* check grammar in `llama_sample_probability_distribution_impl`
* remove malloc code by utilizing vectors
* add PR link to README
* Support special tokens as reverse/anti prompt.
* Tokenize antiprompts only once.
* main : minor
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: tests: add models endpoint scenario
* server: /v1/models add some metadata
* server: tests: add debug field in context before scenario
* server: tests: download model from HF, add batch size
* server: tests: add passkey test
* server: tests: add group attention params
* server: do not truncate prompt tokens if self-extend through group attention is enabled
* server: logs: do not truncate log values
* server: tests - passkey - first good working value of nga
* server: tests: fix server timeout
* server: tests: fix passkey, add doc, fix regex content matching, fix timeout
* server: tests: fix regex content matching
* server: tests: schedule slow tests on master
* server: metrics: fix when no prompt processed
* server: tests: self-extend add llama-2-7B and Mixtral-8x7B-v0.1
* server: tests: increase timeout for completion
* server: tests: keep only the PHI-2 test
* server: tests: passkey add a negative test
* suport multiple cards: split-mode - layer|row
* rm warning
* rebase with master, support tow new OPs, close feature for -sm=row, fix for unit test
* update news
* fix merge error
* update according to review comments
* Add "/chat/completions" as alias for "/v1/chat/completions"
* merge to upstream master
* minor : fix trailing whitespace
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Try IQ4_NL with blocks of 64 - does not look good
* iq4_xs: go to super-blocks of 256 and 6-bit scales for blocks of 32
* iq4_xs: CUDA works - 133.2 t/s
* iq4_xs: AVX2 dot product
* iq4_xs: ARM_NEON dot product
* iq4_nl: Metal implementation
As usual, Metal / Apple Silicon don't like my quants.
* iq3_xs: minor fix
* iq4_xs: shrink by using IQ3_S for attn_k and attn_q
* iq4_xs: revert using IQ3_S for attn_k and attn_v
PPL vs size is good, but CPU performance suffers: on M2 Max
TG-128 drops to 21.7 t/s from 28.8, and on a Ryzen-7950X
to 14.5 t/s from 15.8 t/s. On CUDA we have 135 t/s when
using IQ3_S vs 133 t/s with pure IQ4_XS.
* Fix CI
* iq4_xs: Added forgotten check for 256 divisibility
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Adding IQ2_S and IQ2_M as a single cumulative commit
* Update examples/quantize/quantize.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: docs - refresh and tease a little bit more the http server
* Rephrase README.md server doc
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/server/README.md
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/server/README.md
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update README.md
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
The system prompt is now decoded in batches.
* server : fix off-by-one n_past when start of prompt matches whole cache
The tokens right after the matching part would otherwise skip a pos value.
* [ggml-quants] Provide ggml_vqtbl1q_u8 for 64bit compatibility
vqtbl1q_u8 is not part of arm v7 neon library
* [android-example] Remove abi filter after arm v7a fix
* [github-workflows] Do not skip Android armeabi-v7a build
* server: logs - always use JSON logger, add add thread_id in message, log task_id and slot_id
* server : skip GH copilot requests from logging
* server : change message format of server_log()
* server : no need to repeat log in comment
* server : log style consistency
* server : fix compile warning
* server : fix tests regex patterns on M2 Ultra
* server: logs: PR feedback on log level
* server: logs: allow to choose log format in json or plain text
* server: tests: output server logs in text
* server: logs switch init logs to server logs macro
* server: logs ensure value json value does not raised error
* server: logs reduce level VERBOSE to VERB to max 4 chars
* server: logs lower case as other log messages
* server: logs avoid static in general
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: logs PR feedback: change text log format to: LEVEL [function_name] message | additional=data
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: monitoring - add /metrics prometheus compatible endpoint
* server: concurrency issue, when 2 task are waiting for results, only one call thread is notified
* server: metrics - move to a dedicated struct
* iq4_nl: squash commits for easier rebase
* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels
* Resurrecting iq3_xs
After all the experimentation, nothing was better than this.
* Minor PPL improvement via a block scale fudge factor
* Minor improvement via 3 neighbours
* iq3_xs: working scalar and AVX2 dot products
* iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s)
* iq3_xs: working Metal implementation
* Adding IQ3_M - IQ3_XS mix with mostly Q4_K
* iiq3_xs: a 3.4375 bpw variant
* iq3_xs: make CUDA work for new version
* iq3_xs: make scalar and AVX2 work for new version
* iq3_s: make ARM_NEON work with new version
* iq3_xs: make new version work on metal
Performance is very similar to Q3_K_S
* iq3_xs: tiny Metal speed improvement
* iq3_xs: tiny Metal speed improvement
* Fix stupid warning
* Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS
* iq3_xs: rename to iq3_s
* iq3_s: make tests pass
* Move Q3_K_XS mix to 3.25 bpw
* Attempt to fix failing tests
* Another attempt to fix the Windows builds
* Attempt to fix ROCm
* ROCm again
* iq3_s: partial fix for QK_K = 64
* iq3_s: make it work on metal for QK_K = 64
Pleasent surprise: the coding was super-block size independent,
so all it took was to delete some QK_K == 256 guards.
* Will this fix ROCm?
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* server: tests: init scenarios
- health and slots endpoints
- completion endpoint
- OAI compatible chat completion requests w/ and without streaming
- completion multi users scenario
- multi users scenario on OAI compatible endpoint with streaming
- multi users with total number of tokens to predict exceeds the KV Cache size
- server wrong usage scenario, like in Infinite loop of "context shift" #3969
- slots shifting
- continuous batching
- embeddings endpoint
- multi users embedding endpoint: Segmentation fault #5655
- OpenAI-compatible embeddings API
- tokenize endpoint
- CORS and api key scenario
* server: CI GitHub workflow
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: fallback to chatml
* add new chat template
* server: add AlphaMonarch to test chat template
* server: only check model template if there is no custom tmpl
* remove TODO
* server: health: fix race condition on slots data using tasks queue
* server: health:
* include_slots only if slots_endpoint
* fix compile warning task.target_id not initialized.
This commit adds the `--skip-unknown` option to the convert.py script
and removes the saving of the updated checkpoints to avoid updating
possibly checked out files.
The motivation for this change is that this was done for 1.5
in Commit fc0c8d286a ("llava :
update surgery script to not remove tensors") and makes the examples
more consistent.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* iq4_nl: squash commits for easier rebase
* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels
* iq4_nl: Fix after merging with master
* iq4_nl: another fix after merging with master
* Use IQ4_NL instead of Q4_K when using k-quants is not possible
* Fix typo that makes several tests fail
* It was the ggml_vdotq thing missed inside the brackets
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit contains a suggestion for the README.md in the llava
example. The suggestion adds explicit instructions for how to convert
a llava-1.6 model and run it using llava-cli.
The motivation for this is that having explicit instructions similar to
the 1.5 instructions will make it easier for users to try this out.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* support minLength and maxLength in JSON schema grammar converter
* Update examples/json-schema-to-grammar.py
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This is a follup of Commit fc0c8d286a
("llava : update surgery script to not remove tensors") but this time
the change is to the BakLLaVA specific part of the surgery script.
I've been able to test this using SkunkworksAI/BakLLaVA-1 and it works
as expected using the instructions in README.md.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* server: enrich health endpoint with available slots, return 503 if not slots are available
* server: document new status no slot available in the README.md
This commit updates the surgery script to not remove the tensors from the
model file. For this to work the `--skip-unknown` flag is added as an
argument to the convert.py script in README.md.
The motivation for this change is that the surgery script currently
removes the projector tensors from the model file. If the model was
checked out from a repository, the model file will have been updated
and have to be checked out again to reset this effect. If this can be
avoided I think it would be preferable.
I did not perform this change for BakLLaVA models as I am not sure
how that part works.
* iq1_s: WIP basics
* iq1_s: CUDA is working
* iq1_s: scalar CPU dot product
* iq1_s: WIP AVX2 dot product - something is not right
* Fix tests
* Fix shadow warnings
* Fix after merge with latest master
* iq1_s: AVX2 finally works
* iq1_s: ARM_NEON dot product. Works, but not very fast
* iq1_s: better grid
* iq1_s: use IQ2_XXS for attn_output
At a cost of 0.04 extra bpw this gives a big improvement in PPL.
* iq1_s: Metal basics
Dequantize works, but not dot product
* iq1_s: Metal works, but quite slow
As usual, Apple Silicon does not like the code I write.
* iq1_s: Tests
* iq1_s: slightly faster dot product
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h
* Reverted Makefile
* Fixed include
* Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables
* removed trailing whitespace
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h
* Reverting Makefile
* Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet
* Removing MIRROR_MODE code for this PR
* Removing last bit of MIRROR_MODE code for this PR
* Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static
* Fixed lingering init_llama_backend() bool calls in tests and examples
* Remote enum llama_numa_strategies
* Revert bad merge with dynatemp flags
* add missing enum ggml_numa_strategies declaration and revert sync problem with master
* add missing enum ggml_numa_strategies declaration
* fixed ggml_init_numa variable
* Update ggml.h
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges
* split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples
* Fix up some boolean vs enum comparisons
* Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype
* Update ggml.h
Align enum values
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml.c
Remove whitespace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml.c
align paremeters
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/server/server.cpp
remove whitespace and align brace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update common/common.cpp
Remove whitespace and align brace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* unified ggml_numa_strategy enum and fixed text alignment in server.cpp example
* Update ggml.c
simplified return for platforms without NUMA support
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* removed redundant else from cli argument processing of --numa
* whitespace
---------
Co-authored-by: root <root@nenya.lothlorien.ca>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
* llava: fix clip-model-is-vision flag in README.md
This commit fixes the flag `--clip_model_is_vision` in README.md which
is does not match the actual flag:
```console
$ python convert-image-encoder-to-gguf.py --help
...
--clip-model-is-vision
The clip model is a pure vision model
(ShareGPT4V vision extract for example)
```
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* llava: update link to vit config in README.md
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
---------
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* Fix memory management in llava and server code
Fixes this error:
llama_new_context_with_model: graph splits (measure): 3
Available slots:
-> Slot 0 - max context: 6000
{"timestamp":1707926446,"level":"INFO","function":"main","line":2623,"message":"model loaded"}
all slots are idle and system prompt is empty, clear the KV cache
slot 0 - loaded image
slot 0 is processing [task id: 0]
slot 0 : kv cache rm - [0, end)
slot 0 - encoding image [id: 1]
munmap_chunk(): invalid pointer
Aborted
* Make it cleaner by checking size in batch free wrapper
* Create llava-survery-v2.py
* Update convert-image-encoder-to-gguf.py
* Update convert-image-encoder-to-gguf.py
* Rename llava-survery-v2.py to llava-surgery-v2.py
* Update convert-image-encoder-to-gguf.py
will now search for projector
* Update convert-image-encoder-to-gguf.py
whoops
* Update llava-surgery-v2.py
* Clip: Bugfix for normalization (it did not loat the 3 std and mean values)
Clip: bicubic resize function
Clip: added save-to-bmp/pil for debugging and conversion from/to 32/8 images
Clip: added normalization with FP16 precision simulation (image tensors match HF implementation, can be switched off, only used for llava-1.6)
Clip: added newline tensor, mergetype kv, image-grid kv, new resize-pad function with resolution from gridpoints
Clip: clip_image_preprocess now returns a float * vector instead of float, this way llava 1.5 and 1.6 is supported
llava: added ggml cpu graph for embedding patching, added spatial_unpad preliminary support, added a lot of comments that need to be cleaned when all is final
convert-image-encoder: fixed image-grid flattening
* whitespace corrections
* ws
* Tensors are now properly permuted.
Before the embeddings were inserted 1:1, now they are split into the 24x24 patches as in reference.
* ws
* added verbose_prompt support into cli
added stopwords for llava-1.6 into cli
* moved llava functions to llava.cpp, made clip.h C compatible API, replaced vector style functions with pointers, added a debug define to remove functions from compilation while not needed
* ws
* convert : skip unknown tensors (need for LLaVA)
* llava : update readme
* llava : fix compile warnings
* llava : style
* convert : add --skip-unknown CLI arg
* server : remove clip structs
* bugfix for non llava-1.6
It should now work with llava-1.5 as well
* clip : minor code rearrange
* llava : update readme a bit
---------
Co-authored-by: John <cmt-nct@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* finetune: rename feed-forward tensors (w1/w2/w3)
This commit renames the feed-forward tensors w1, w2 and w3 to ffn_gate,
ffn_down and ffn_up respectively.
The motivation for this change is to make it easier to understand the
purpose of the tensors. This also seems to be inline with the names
used in the llama_layer struct in llama.cpp.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* train-text-from-scratch: rename ff tensors
This commit renames the feed-forward tensors w1, w2 and w3 to ffn_gate,
ffn_down and ffn_up respectively.
The motivation for this change is to make it easier to understand the
purpose of the tensors. This also seems to be inline with the names
used in the llama_layer struct in llama.cpp
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
---------
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* batched embedding: pool outputs by sequence id. updated embedding example
* bring back non-causal attention
* embd : minor improvements
* llama : minor
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llava: remove prog parameter from ArgumentParser
This commit removes the `prog` parameter from `ArgumentParser`
so that it uses the default value which is the name of the script.
The motivation for this change is that currently the usage output looks
like this:
```console
$ python examples/llava/convert-image-encoder-to-gguf.py --help
usage: convert_hf_to_gguf.py [-h] ...
```
And with this change it will look like this:
```console
$ python examples/llava/convert-image-encoder-to-gguf.py --help
usage: convert-image-encoder-to-gguf.py [-h] ...
```
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* ci: add W503 to flake8 ignore list
This commit adds W503 to the ignore list for flake8. This is done to
avoid the following error:
W503 line break before binary operator
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
---------
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* BERT model graph construction (build_bert)
* WordPiece tokenizer (llm_tokenize_wpm)
* Add flag for non-causal attention models
* Allow for models that only output embeddings
* Support conversion of BERT models to GGUF
* Based on prior work by @xyzhang626 and @skeskinen
---------
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: allow to specify tokens as strings in logit_bias
* Apply suggestions from code review
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llava: add requirements.txt and update README.md
This commit adds a `requirements.txt` file to the `examples/llava`
directory. This file contains the required Python packages to run the
scripts in the `examples/llava` directory.
The motivation of this to make it easier for users to run the scripts in
`examples/llava`. This will avoid users from having to possibly run into
missing package issues if the packages are not installed on their system.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* llava: fix typo in llava-surgery.py output
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
---------
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
This commit adds the missing .py extension to the convert-image-encoder-to-gguf
script. It also fixes the paths for the `model` and `mmproj` options in the
example llava-cli command.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
This commit fixes a typo in the README.md file for the llava example
which is causing the formatting to look a little off:
Clone llava-v15-7b`` and clip-vit-large-patch14-336`` locally
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* include total "num_slots" in default_generation_settings_for_props
* cleanup total_slots return value in /props endpoint
* update /props endpoint docs with total_slots
* remove num_slots from default_generation_settings_for_props
* update /props endpoint section
server : fix deadlock when prompt array contains strings and numbers
server : removed an unnecessary generation when generating multi-prompts
server : removed an unnecessary assert
* imatrix: adding --combine and --continue-from
* imatrix: be able to start from a specific chunk
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* update guide for make installation, memory, gguf model link, rm todo for windows build
* add vs install requirement
* update for gpu device check
* update help of llama-bench
* fix grammer issues
* add --no-mmap, show sycl backend
* fix conflict
* fix code format, change print for --no-mmap
* ren no_mmap to mmap, show mmap when not default value in printer
* update guide for mmap
* mv position to reduce model reload
* New Feature:
1. Sum_Rows:
fix cuda kernel overflow
fix block shape error when nrows too big
2. Im2Col:
Support Batch in cuda
Support f32 to f32 both in cpu && cuda
3. DepthWiseConv:
Support by Im2Col && MulMat
4. Pool_2d:
Supoort avg pooling in cuda
5. HardSigmoid:
Imp in cuda
6. HardSwish:
Imp in cuda
* fix tabs instead of spaces
* code clean
* CUDA POOL2D
* ADD POOL2D test case in test-backend-ops.cpp
* code clean
* fix pool2d_kernel
nits
* fix bug in pool2d kernel
* fix avg pooling, count_include_pad
nits
* test-backend-ops : add more pool_2d tests
* cuda : fix warnings and formatting
* ggml : check types in release builds too in pool_2d
* test-backend-ops : remove f16 pool_2d tests
* cuda : more style fixes
* Add assert in ggml_cuda_op_pool2d
* pool2d float padding fallback
* test-backend-ops : add dst_type to im2col
---------
Co-authored-by: slaren <slarengh@gmail.com>
* support SYCL backend windows build
* add windows build in CI
* add for win build CI
* correct install oneMKL
* fix install issue
* fix ci
* fix install cmd
* fix install cmd
* fix install cmd
* fix install cmd
* fix install cmd
* fix win build
* fix win build
* fix win build
* restore other CI part
* restore as base
* rm no new line
* fix no new line issue, add -j
* fix grammer issue
* allow to trigger manually, fix format issue
* fix format
* add newline
* fix format
* fix format
* fix format issuse
---------
Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
* server : fix context shift + simplify self-extend
* server : take system_tokens into account
* server : more n_past fixes
* server : rever n_past_se changes
* Changed ugly xxd to literals.
HPP files are much more readable as multiline literals rather than hex arrays.
* Dashes in literal variable names.
Replace . and - with _ in file names -> variable names.
* Comment on removing xxd.
XXD-> string literals
* XXD to string literals.
Replaced these unreadable headers with string literal versions using new deps.sh.
* iq3_xxs: quantize/dequantize
RMSE seems a bit high-ish at about half-way between q2_K and
q3_K, so need to check more.
* iq3_xxs: CUDA dequantize works
* iq2_xxs: tuning quantization
* iq3_xxs: starting to look better
PPL on wiki.test.raw
LLaMA-v1-7B: 6.4218
LLaMA-v2-7B: 6.3560
Mistral-7B : 6.0717
This is better than Q3_K_XS, with a 5% reduction in quantized model
size.
* iq3_xxs: CUDA dot product
We have
PP-512: 5891 t/s
TG-128: 143.9 t/s
* iq3_xxs: scalar and AVX2 dot products
* iq3_xxs: ARM_NEON and Metal
Metal performance is decent, ARM_NEON is pathetic
* iq3_xxs: slightly better grid points
* Faster iq3_xxs and iq2_xs dot products on CUDA
* iq3_xxs: add some quant mix
* iq3_xxs: fix failing quantization test
Dot product still fails. Is this real?
* iq3_xxs: hopefully fix ROCm
* iq3_xxs: failing tests
This time the dot product accuracy did find an actual bug
in the AVX2 implementation.
* Add IQ3_XXS to test-backend-ops
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* allow empty --prompt-cache file
This allows the use of std::tmpnam(), std::tmpfile(), Python's tempfile.NamedTemporaryFile(), and similar create-empty-file API's for the user.
I switched from the C fopen API to the C++ filesystem api to get around the fact that, to the best of my knowledge, C has no portable way to get the file size above LONG_MAX, with std::ftell() returning long? fallback to std::ifstream for c++ < 17
(the project is currently targeting C++11 it seems - file_exists() and file_size() can be removed when we upgrade to c++17)
* formatting
(requested in codereview)
* remove c++17, file_is_empty
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* first update for migration
* update init_cublas
* add debug functio, commit all help code
* step 1
* step 2
* step3 add fp16, slower 31->28
* add GGML_LIST_DEVICE function
* step 5 format device and print
* step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue
* support main device is non-zero
* step7 add debug for code path, rm log
* step 8, rename all macro & func from cuda by sycl
* fix error of select non-zero device, format device list
* ren ggml-sycl.hpp -> ggml-sycl.h
* clear CMAKE to rm unused lib and options
* correct queue: rm dtct:get_queue
* add print tensor function to debug
* fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481
* summary dpct definition in one header file to replace folder:dpct
* refactor device log
* mv dpct definition from folder dpct to ggml-sycl.h
* update readme, refactor build script
* fix build with sycl
* set nthread=1 when sycl, increase performance
* add run script, comment debug code
* add ls-sycl-device tool
* add ls-sycl-device, rm unused files
* rm rear space
* dos2unix
* Update README_sycl.md
* fix return type
* remove sycl version from include path
* restore rm code to fix hang issue
* add syc and link for sycl readme
* rm original sycl code before refactor
* fix code err
* add know issue for pvc hang issue
* enable SYCL_F16 support
* align pr4766
* check for sycl blas, better performance
* cleanup 1
* remove extra endif
* add build&run script, clean CMakefile, update guide by review comments
* rename macro to intel hardware
* editor config format
* format fixes
* format fixes
* editor format fix
* Remove unused headers
* skip build sycl tool for other code path
* replace tab by space
* fix blas matmul function
* fix mac build
* restore hip dependency
* fix conflict
* ren as review comments
* mv internal function to .cpp file
* export funciton print_sycl_devices(), mv class dpct definition to source file
* update CI/action for sycl code, fix CI error of repeat/dup
* fix action ID format issue
* rm unused strategy
* enable llama_f16 in ci
* fix conflict
* fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml
* fix ci cases for unsupported data type
* revert unrelated changed in cuda cmake
remove useless nommq
fix typo of GGML_USE_CLBLAS_SYCL
* revert hip cmake changes
* fix indent
* add prefix in func name
* revert no mmq
* rm cpu blas duplicate
* fix no_new_line
* fix src1->type==F16 bug.
* pass batch offset for F16 src1
* fix batch error
* fix wrong code
* revert sycl checking in test-sampling
* pass void as arguments of ggml_backend_sycl_print_sycl_devices
* remove extra blank line in test-sampling
* revert setting n_threads in sycl
* implement std::isinf for icpx with fast math.
* Update ci/run.sh
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/sycl/run-llama2.sh
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/sycl/run-llama2.sh
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add copyright and MIT license declare
* update the cmd example
---------
Co-authored-by: jianyuzh <jianyu.zhang@intel.com>
Co-authored-by: luoyu-intel <yu.luo@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* feat: add Dockerfiles for each platform that user ./server instead of ./main
* feat: update .github/workflows/docker.yml to build server-first docker containers
* doc: add information about running the server with Docker to README.md
* doc: add information about running with docker to the server README
* doc: update n-gpu-layers to show correct GPU usage
* fix(doc): update container tag from `server` to `server-cuda` for README example on running server container with CUDA
* Support for Yi-VL, templating fix for mobileVLM
* ws
* Update examples/llava/clip.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update llava-cli.cpp
* Update clip.cpp
bugfix for new conversions
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: add llama_server_queue struct
* server: add llama_server_response_event
* server: add comments
* server: move all mutexes away from server.cpp
* server: correct multitask response
* server: only add back deferred tasks when one slot is available
* server: fix a race condition cause by "request_completion"
* kl-divergence: be able to save all logits to a file
* Add ability to compute KL-divergence
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* MobileVLM native implementation
* delete depthwise_conv_2d and permute_cpy relative code, replace the two by the existed functions, and opt ldp definition, support LLAMA_PERF option for CMake
* move android script to example/llava directory
* Fix the editor config checks
---------
Co-authored-by: Chenxiaotao03 <chenxiaotao03@meituan.com>
This commit adds `--sample-start` and `--include-sample-start` to the
output from the main function in finetune.cpp.
The motivation for this is that even though these are set explicitly by
the user via the command line, if one forgets to set them then it is
useful to have their values printed out. Otherwise it is possible to go
through the whole training process before realizing that the values are
not what one expected.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* Add Q3_K_XS - intermediate size between Q2_K and Q3_K_S
* Q3_K_XS: quanize first 1/8 of ffn_down layers with Q4_K
Together with an importance matrix, this brings perplexity
for LLaMA-v2-70B below the perplexity of the former Q2_K
with a 800 MB smaller quantized model size.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* TruthfulQA: 1st attempt, does not look like it is working
The same implementation can be used for HellaSwag as well,
so I converted a HellaSwag validation dataset to the binary
format used here and tested with that. The score is only
around 50, so something is not quite right.
* TruthfulQA: works but the result is bad
I know it works because if I convert the HellaSwag validation
data to the binary format used in the truthful_qa_score() function
I get the exact same result as from the hellaswag_score() function.
But I guess, the questions are tricky and the way I have done
the combination of question + answer is very likely not the best.
The TruthfulQA validation dataset contains 817 questions, with
random chance result around 19%. With this version I get
29.1% for Mistral-7B and 55.2% for Mistral-7B-Instruct-v0.2.
The HF leader board results for these two models are
42.2% and 68.3%, respectively.
* TruthfulQA: fix random sample
* TruthfulQA: prepare tasks in parallel for large test datasets
* Rename truthful_qa to multiple_choice
* Make MSVC happy
I had forgotten that MSVC does not make constexpr's available
inside a lambda.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
For Mistral-7B and fp16, time on my system goes down from 536 seconds
to 423 seconds for the full evaluation dataset (10042 tasks).
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* winogrande: simple implementation
It doesn't look like it is working - why?
For Mistral-7B it is barely better than
random chance (score ~60% for 1267 tasks), while I see
Mistral-7B scoring 78.4% on the HF leader board.
1-sigma statistical uncertainty for 1267 tasks is ~1.4,
so no way the difference is due to statistics.
* winogrande: somewhat better
Score for Mistrali7-B is now 68.9 on the validation set of
winogrande_debiased. Still far from the reported 78.4, but
better than what I had before.
* winogrande: improving
Mistral-7B score is now 73.56.
Still not quite 78.4 but getting there.
We are also getting a lower score on HellaSwag
compared to HF leader board, so I'm not expecting
we will get up to 78.4 anyway.
It looks like it is better to skip the choice word(s)
when evaluating the average log-likelihood. This kind of
makes sense because a more common word (in Winogrande this is
often a name) will have a higher probability without knowing
about the follow up context, and this will skew the log-likelihood
towards the more common word. We can only do this if the
choice words are not last in the sentence.
It also looks like it is better to skip the punctuation at the
end of the sentence, provided the choice words are not last.
* winogrande: add dataset instructions
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* backend : add eval callback
ggml-ci
* backend : group nodes in a single compute when user don't need them
* backend : clean-up the implementation
ggml-ci
* simple : do not perform tensor data copy if not needed
* simple : fix
* imatrix : offload to GPU support
* imatrix : fix ggml_mul_mat_id hanlding
ggml-ci
* ci : add imatrix test
ggml-ci
* ci : rearrange output
ggml-ci
This commit adds the name of the training data file to the log message
printed when the training data is tokenized.
The motivation for this change is that it can be useful to show which
file is being tokenized when running the finetune example.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* Introduce starter project for Android
Based on examples/llama.swiftui.
* Add github workflow
* Set NDK version
* Only build arm64-v8a in CI
* Sync bench code
* Rename CI prop to skip-armeabi-v7a
* Remove unused tests
This commit replaces the magic number LLAMA_FILE_MAGIC_LORA used in
finetune.cpp with LLAMA_FILE_MAGIC_GGLA defined in llama.h.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* examples : save-load-state: save only required state
* llama : only reserve n_vocab * n_batch at most for logits
llama_decode asserts that only n_batch tokens are passed each call, and
n_ctx is expected to be bigger than n_batch.
* llama : always reserve n_vocab * n_batch for logits
llama_context de-serialization breaks if the contexts have differing
capacity for logits and llama_decode will at maximum resize to
n_vocab * n_batch.
* llama : only save and restore used logits
for batch sizes of 512 this reduces save state in the best case by
around 62 MB, which can be a lot if planning to save on each message
to allow regenerating messages.
* llama : use ostringstream and istringstream for save and load
* llama : serialize rng into minimum amount of space required
* llama : break session version due to serialization changes
* add the parameter : --no-display-prompt , combine with --log-disable it will display only the generated tokens
* remove empty line
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : ggml-backend integration
* ggml-backend : add names to buffers
* fix unmap after loading
* batched-bench : add tensor_split param
* llama : check for null tensor_split
* ggml-backend : increase GGML_MAX_BACKENDS
* improve graph splitting, partial fix for --no-kv-offload
* cuda : add ggml-backend split buffer support
* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)
* ggml : fix null backend dereference (#4807)
* ggml : fix null backend dereference
* ggml : also check ggml_backend_is_cpu
* test-backend-ops : check buffer allocation failures
* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)
* ggml : fix mul_mat_id work size
* llama : rewrite session kv load/set without graphs
* minor
* llama : only initialize used backends, free backends on context free
* llama : abort ctx if cuda backend init fails
* llama : rewrite lora with ggml-backend and compute on CPU
ggml-ci
* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer
* opencl : add ggml-backend buffer type
* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)
* llama : on Metal, by default offload the full model
ggml-ci
* metal : page align the data ptr (#4854)
* Apply suggestions from code review
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* cuda : fix split buffer free
* address review comments
* llama-bench : add split-mode parameter
* fix whitespace
* opencl : fix double initialization
* server : add --split-mode parameter
* use async copy and compute to improve multi-gpu performance
ggml-ci
* use async memcpys to copy the graph outputs to the CPU
* fix opencl
* use a host buffer for the cpu compute buffer for faster copies to the gpu
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
This commit replaces the magic number used in export-lora.cpp with
the one defined in llama.h, which is indirectly included via common.h.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* Updated Models Layout
- Added a models drawer
- Added downloading directly from Hugging Face
- Load custom models from local folder
- Delete models by swiping left
* trimmed trailing white space
* Updated Models Layout
* Restore intended k-quants quantization mixes for MoE models
* Update Q2_K_S values in the quantize tool
Still using LLaMA-v1 PPL values in the quant description
today does not make much sense. But let's leave this update
for another PR.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: added support for multiple api keys, added loading api keys from file
* minor: fix whitespace
* added file error handling to --api-key-file, changed code to better
reflect current style
* server: update README.md for --api-key-file
---------
Co-authored-by: Michael Coppola <info@michaeljcoppola.com>
* added /health endpoint to the server
* added comments on the additional /health endpoint
* Better handling of server state
When the model is being loaded, the server state is `LOADING_MODEL`. If model-loading fails, the server state becomes `ERROR`, otherwise it becomes `READY`. The `/health` endpoint provides more granular messages now according to the server_state value.
* initialized server_state
* fixed a typo
* starting http server before initializing the model
* Update server.cpp
* Update server.cpp
* fixes
* fixes
* fixes
* made ServerState atomic and turned two-line spaces into one-line
* updated `server` readme to document the `/health` endpoint too
* used LOG_INFO after successful model loading
* added /health endpoint to the server
* added comments on the additional /health endpoint
* Better handling of server state
When the model is being loaded, the server state is `LOADING_MODEL`. If model-loading fails, the server state becomes `ERROR`, otherwise it becomes `READY`. The `/health` endpoint provides more granular messages now according to the server_state value.
* initialized server_state
* fixed a typo
* starting http server before initializing the model
* Update server.cpp
* Update server.cpp
* fixes
* fixes
* fixes
* made ServerState atomic and turned two-line spaces into one-line
* updated `server` readme to document the `/health` endpoint too
* added /health endpoint to the server
* added comments on the additional /health endpoint
* Better handling of server state
When the model is being loaded, the server state is `LOADING_MODEL`. If model-loading fails, the server state becomes `ERROR`, otherwise it becomes `READY`. The `/health` endpoint provides more granular messages now according to the server_state value.
* initialized server_state
* fixed a typo
* starting http server before initializing the model
* Update server.cpp
* Update server.cpp
* fixes
* fixes
* fixes
* made ServerState atomic and turned two-line spaces into one-line
Uses ggml functions instead of hardcoded names and adds support to quantize into the modern Q-K variants.
This is just the bare minimum to get k-types working - a more refined choice of types would be needed to get best quality on low quantizations.
I ran a few tests, it doesn't break anything I could notice and a Q6_K ViT works almost as well as Q8_0 but 3 times the inference speed.
This change fixes an issue where supplying `--image missing-file` would
result in a segfault due to a null pointer being dereferenced. This can
result in distracting info being printed if robust crash analysis tools
are being used.
* updated server readme to reflect the gg/server-token-probs-4088 commit
added explanation for the API's completion result which now includes `completion_probabilities`. Also added a JSON schema that shows the type/structure of `completion_probabilities`.
* simplified the `completion_probabilities` JSON schema
It's now easier to understand what the structure of `completion_probabilities` looks like.
* minor : fix trailing whitespace
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Changes to server to allow metadata override
* documentation
* flake.nix: expose full scope in legacyPackages
* flake.nix: rocm not yet supported on aarch64, so hide the output
* flake.nix: expose checks
* workflows: nix-ci: init; build flake outputs
* workflows: nix-ci: add a job for eval
* workflows: weekly `nix flake update`
* workflows: nix-flakestry: drop tag filters
...and add a job for flakehub.com
* workflows: nix-ci: add a qemu job for jetsons
* flake.nix: suggest the binary caches
* flake.lock: update
to a commit recently cached by nixpkgs-cuda-ci
---------
Co-authored-by: John <john@jLap.lan>
Co-authored-by: Someone Serge <sergei.kozlukov@aalto.fi>
This change makes it possible to use flags like `--grammar` when using
the `llava-cli` program. The rest is just code cleanup deleting a long
standing TODO comment.
This change also ensures that logging information is emitted to stderr
which helps the `llava-cli` command be more friendly to shell scripts.
See Mozilla-Ocho/llamafile@1cd334f
The server currently schedules tasks using a sleep(5ms) busy loop. This
adds unnecessary latency since most sleep implementations do a round up
to the system scheduling quantum (usually 10ms). Other libc sleep impls
spin for smaller time intervals which results in the server's busy loop
consuming all available cpu. Having the explicit notify() / wait() code
also helps aid in the readability of the server code.
See mozilla-Ocho/llamafile@711344b
The default values for tfs_z and typical_p were being set to zero, which
caused the token candidates array to get shrunk down to one element thus
preventing any sampling. Note this only applies to OpenAI API compatible
HTTP server requests.
The solution is to use the default values that OpenAI documents, as well
as ensuring we use the llama.cpp defaults for the rest. I've tested this
change still ensures deterministic output by default. If a "temperature"
greater than 0 is explicitly passed, then output is unique each time. If
"seed" is specified in addition to "temperature" then the output becomes
deterministic once more.
See mozilla-Ocho/llamafile#117
See mozilla-Ocho/llamafile@9e4bf29
* initial commit, going through initializations
* main loop finished, starting to debug
* BUG: generates gibberish/repeating tokens after a while
* kv_cache management
* Added colors to distinguish drafted tokens (--color). Updated README
* lookup : fix token positions in the draft batch
* lookup : use n_draft from CLI params
* lookup : final touches
---------
Co-authored-by: Leon Ericsson <leon.ericsson@icloud.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add API key authentication for enhanced server-client security
* server : to snake_case
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Fixes "Not enough space in the context's memory pool" encountered on certain models, which seems to be caused by some imprecision related to the automatic casting of floating point values
* do not cast to size_t, instead just use doubles
* ggml : add ggml_row_size(), deprecate ggml_type_sizef()
* ggml : fix row size compute to avoid overflows
* tests : fix sizey -> sizez
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
On commit b1108 (44c117f4) xaedes added
ggml_allocr * alloc = NULL;
... (many lines in between)
if (alloc) {
ggml_allocr_free(alloc);
}
Which is correct, but it's easy to lose context after many lines in between.
On commit b1287 (0e76a899) xaedes made a big change. From here on, alloc is freed eagerly.
alloc = ggml_allocr_new(...)
... (short lines of code)
ggml_allocr_free(alloc)
This happens a few times, but alloc is never set to NULL, and many lines below,
we still have
if (alloc) {
ggml_allocr_free(alloc);
}
which causes a double-free.
* Samplers sequence order w parameter
* Cleaned commented code
* Fixed formatting
* Rewrote with unordered_map
* Revert and rewrite, too many problems and safeguards would be needed
* Fixed code style
* Code style fixes according to review
* More readable samplers input string, fixed help
* Style fix in sampler_queue
* Formatting fixes
* Fixing whitespaces
This commit updates the error message that is printed when the
KV cache is not big enough to hold all the prompt and generated
tokens. Specifically it removes the reference to n_parallel and
replaces it with n_len.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* metal : implement soft_max_ext
* cuda : implement soft_max_ext
* ggml : implement soft_max_ext (CPU)
* batched-bench : print threads
ggml-ci
* metal : simplify soft_max encoding
ggml-ci
* cuda : use 512 threads for soft_max instead of 32
* ggml : update soft max cpu
* cuda : do warp-based block reduce
* cuda : increase max block size to 1024
* cuda : fix warp reduction initialization of shared mem
* metal : warp-based reduction for soft max kernel
* metal : warp-based reduce for rms_norm
* metal : simplify soft max kernel
ggml-ci
* alloc : fix build with debug
* * add multiprompt support
* * cleanup
* * more cleanup
* * remove atomicity of id_gen, and change lock_guard to unique_lock on completion requests
* * remove all references to mutex_multitasks
* Update examples/server/server.cpp
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* Update examples/server/server.cpp
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* Update examples/server/server.cpp
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* Update examples/server/server.cpp
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* * change to set
---------
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* ShareGPT4 compatibility (vision encoder only loading)
Load only a CLIP vision encoder (as supplied by ShareGPT finetunes)
Corrects the argument parsing for --img_mean and --img_std (which were previously not parsed but attempted to access)
Defines defaults for img_mean and img_std which are equal to the llava 1.5 CLIP encoder, so you do not have to provide them
* Update convert-image-encoder-to-gguf.py
* fix oai proxy
fix generation not stoped while bot stop talking in chat mode
fix possible `slot_id` not exist
response for cors (and pre flight)
* oai proxy: workaround for some client (such as Chatbox)
* use stop as separator to replace hardcoded `\n`
* copy to llama.cpp as subdir
* attempt enabling metal, fails
* ggml metal compiles!
* Update README.md
* initial conversion to new format, utf8 errors?
* bug fixes, but now has an invalid memory access :(
* added O3, now has insufficient memory access
* begin sync with master
* update to match latest code, new errors
* fixed it!
* fix for loop conditionals, increase result size
* fix current workflow errors
* attempt a llama.swiftui workflow
* Update .github/workflows/build.yml
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add openai-compatible POST /v1/chat/completions API endpoint to server example
* fix code style
* Update server README.md
* Improve server README.md
* Fix server.cpp code style according to review
* server : some style changes
* server : indentation
* server : enable special tokens during tokenization by default
* server : minor code style
* server : change random string generator
* straightforward /v1/models endpoint
---------
Co-authored-by: kir-gadjello <111190790+kir-gadjello@users.noreply.github.com>
Co-authored-by: Tobi Lütke <tobi@Tobis-MacBook-Pro.local>
* llama : keep track of used KV cells + better KV cache management
* llama : zero KV cache used upon clear
ggml-ci
* llama : allow exporting a view of the KV cache (#4180)
* Allow exporting a view of the KV cache
* Allow dumping the sequences per cell in common
* Track max contiguous cells value and position as well
* Fix max contiguous empty cells index calculation
Make dump functions deal with lengths or sequences counts > 10 better
* Fix off by one error in dump_kv_cache_view
* Add doc comments for KV cache view functions
Eliminate cell sequence struct; use llama_seq_id directly
Minor cleanups
* common : add -dkvc arg for enabling kv cache dumps
---------
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
* Support special tokens and not adding BOS to prompt in speculative
* Adapt to new should_add_bos function
* Ensure tgt and dft have same add_bos setting
- introduces help entry for the argument
- cuts '--gpu-layers' form in order to simplify usage and documentation.
Signed-off-by: Jiri Podivin <jpodivin@gmail.com>
Co-authored-by: Jiri Podivin <jpodivin@redhat.com>
* finetune : zero the loraB initial vectors
Without this, the first iteration is starting out far from the base model, instead of exactly on it.
Zeroing loraB is what the paper recommends. loralib also zeroes at least one of the init vector pairs
(though it departs from the paper in using a different distribution for the other vector, in some cases).
* tabs to spaces
* Use ggml_set_zero instead of adding a new function
* gguf-py: gguf-dump: Respect --no-tensor flag in JSON mode.
* Respect add_bos_token GGUF metadata value
* gguf-py: Try to fix SpecialVocab giving up too easily for the Nth time
* gguf-py: Refactor and add file reading support
* Replay changes from #3871
Credit to @cebtenzzre for that pull
* Various type annotation fixes.
* sort imports with isort (again)
* Fix missing return statement in add_tensor
* style cleanup with flake8
* fix NamedTuple and Enum usage
* Fix an issue with state init in GGUFReader
Move examples to an examples/ directory
Clean up examples
Add an example of modifying keys in a GGUF file
Update documentation with info on examples
Try to support people importing gguf/gguf.py directly
* Damagage is not a word.
* Clean up gguf-py/examples/modify_gguf.py whitespace
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* Update gguf-py/examples/modify_gguf.py formatting
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* Update gguf-py/gguf/gguf_reader.py type hint
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* Make examples executable, formatting changes
* Add more information to GGUFReader and examples comments
* Include a gguf Python package version bump
* Add convert-gguf-endian.py script
* cleanup
* gguf-py : bump minor version
* Reorganize scripts
* Make GGUFReader endian detection less arbitrary
* Add JSON dumping support to gguf-dump.py
Which I kind of regret now
* A few for gguf-dump.py cleanups
* Murder accidental tuple in gguf-py/scripts/gguf-dump.py
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* cleanup
* constants : remove unneeded type annotations
* fix python 3.8 compat
* Set up gguf- scripts in pyproject.toml
* And include scripts/__init__.py, derp
* convert.py: We can't currently support Q8_0 on big endian.
* gguf-py: SpecialVocab: Always try available sources for special token ids
gguf-py: SpecialVocab: Try to load merges from merges.txt if not in tokenizer.json
gguf-py: SpecialVocab: Add 'add_bos_token' type bools to GGUF metadata
u
* cleanup
* Promote add_X_token to GGUF metadata for BOS and EOS
---------
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* Update server.cpp with min_p after it was introduced in https://github.com/ggerganov/llama.cpp/pull/3841
* Use spaces instead of tabs
* Update index.html.hpp after running deps.sh
* Fix test - fix line ending
* fix backward process of rope
rope backward process was broken after YaRN RoPE (#2268) implementation, due to missing changes in backward functions.
the code for the backward process is nearly identically to the forward process:
the only difference is the sign of the sin-values.
to avoid future regressions remove the near-duplicate backward functions and reuse the forward code:
for this a new function argument `bool forward` was added to `ggml_compute_forward_rope_f32` and `ggml_compute_forward_rope_f16`.
the sin-values will be negated when forward is false.
* fix finetune rope call to use correct default attn_factor of 1.0f
* remove unused `ggml_rope_xpos_back`
it is better to have only one `ggml_rope_back` function that accepts all rope parameters, so that `ggml_compute_backward` can propagate all parameters without having to switch between different rope_back variants.
* fix comments explaining the sinus sign in ggml_forward_rope
* add missing function arguments in declaration
* fix function argument type in declaration
llava-cli was loading models with default params and ignoring settings
from the cli. This switches to a generic function to load the params
from the cli options.
* wip llava python bindings compatibility
* add external llava API
* add base64 in-prompt image support
* wip refactor image loading
* refactor image load out of llava init
* cleanup
* further cleanup; move llava-cli into its own file and rename
* move base64.hpp into common/
* collapse clip and llava libraries
* move llava into its own subdir
* wip
* fix bug where base64 string was not removed from the prompt
* get libllava to output in the right place
* expose llava methods in libllama.dylib
* cleanup memory usage around clip_image_*
* cleanup and refactor *again*
* update headerdoc
* build with cmake, not tested (WIP)
* Editorconfig
* Editorconfig
* Build with make
* Build with make
* Fix cyclical depts on Windows
* attempt to fix build on Windows
* attempt to fix build on Windows
* Upd TODOs
* attempt to fix build on Windows+CUDA
* Revert changes in cmake
* Fix according to review comments
* Support building as a shared library
* address review comments
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
* cmake : fix build when .git does not exist
* cmake : simplify BUILD_INFO target
* cmake : add missing dependencies on BUILD_INFO
* build : link against build info instead of compiling against it
* zig : make build info a .cpp source instead of a header
Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com>
* cmake : revert change to CMP0115
---------
Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com>
* Add '-ngl' support to finetune.cpp
* Add fprintf in ggml_cuda_op_add
When I tried CUDA offloading during finetuning following the readme, I got an assert here.
This probably isn't an important case because inference later gives a warning saying you should use f16 or f32 instead when using lora
* Add 'finetune.sh', which currently fails when using GPU
"error: operator (): Finetuning on tensors with type 'f16' is not yet supported"
* tweak finetune.sh
* Suppress some warnings in ggml.c
* Add f16 implementation to ggml_compute_forward_add_f16_f32
* Add an f16 case to ggml_add_cast_impl and llama_build_lora_finetune_graphs
* finetune.sh: Edit comments
* Add "add_f16_f32_f32_cuda"
* Tweak an error message
* finetune.sh: Add an optional LLAMA_MODEL_DIR variable
* finetune.sh: Add an optional LLAMA_TRAINING_DIR variable
* train : minor
* tabs to spaces
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
* Introduce the new Min-P sampler by @kalomaze
The Min-P sampling method was designed as an alternative to Top-P, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token.
* Min-P enabled and set to 0.05 default
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
* Extend llama_kv_cache_seq_rm to allow matichng any sequence
* Replace llama_kv_cache_tokens_rm with llama_kv_cache_clear
Use llama_kv_cache_clear for cache clearing
Change calls to llama_kv_cache_tokens_rm that want to delete by position to use llama_kv_cache_seq_rm functionality
* cmake : add helper for faster CUDA builds
* batched : add NGL arg
* ggml : skip nops in compute_forward
* cuda : minor indentation
* cuda : batched cuBLAS GEMMs for src0 F16 and src1 F32 (attention ops)
* Apply suggestions from code review
These changes plus:
```c++
#define cublasGemmBatchedEx hipblasGemmBatchedEx
```
are needed to compile with ROCM. I haven't done performance testing, but it seems to work.
I couldn't figure out how to propose a change for lines outside what the pull changed, also this is the first time trying to create a multi-part review so please forgive me if I mess something up.
* cuda : add ROCm / hipBLAS cublasGemmBatchedEx define
* cuda : add cublasGemmStridedBatchedEx for non-broadcasted cases
* cuda : reduce mallocs in cublasGemmBatchedEx branch
* cuda : add TODO for calling cublas from kernel + using mem pool
---------
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
* added `llama_model_token_*` variants to all the `llama_token_*` functions.
* added `LLAMA_API`
* formatting
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* removed old `llama_token` functions
* changed 3 more functions to take in model
- `llama_token_get_text`
- `llama_token_get_score`
- `llama_token_get_type`
* added back docs
* fixed main.cpp
* changed token functions to use new model variants
* changed token functions to use new model variants
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* implementing parallel decoding in server example
* crash fixed
* save dev progress
* refactored sampling function
* completion endpoint working
* multiple client support
* grammar + no stream completion
* cached prompt support
* chat.mjs support cached prompt + some fixes
* server ui now support multiple clients
* unused change reverted
* fixed timings per slot
* add context swap
* add changes to README.md
* llava multimodal integration
* fixed tokens probs
* add multimodal input - alfa
* refactor code + remove unused comments + improved README.md
* fix compilation errors with llvm
* notify the user from server ui that multimodality is unavialable
* some ci fixes
* fix ci make build undefined ref errors
* fix long prompt than ctx proposed in #3639
* fixed premature end due stop word
* context shift fixed
* fix llava implementation
* sync README.md changes
* readme change
* update api like OpenAI
* multimodal support enabled by default
* fix make bui;d errors
* fix multiple clients
* fix zig build
* new sampling API
* latest changes of sampling API
* server : coding-style normalization
* server : coding-style normalization (part 2)
* server : remove beam-search functionality
* server : bug fix in ingest_images
n_tokens is incremented internally by llama_batch_add
* server : use refs + use llama_batch_clear()
* server : snake case
* server : minor sync
* added thread safe pipeline
* server : bach has to be allocated for n_parallel sequences
* server : no need for atomic int - already using mutex
* server : logs + minor code style
* server : fix multibyte handle in partial response (#3706)
* fix image load + view image in chat
* make : silence stb warnings
* clip : link to ggml, not to llama
* server : fix switch fallthrough
* server : fix crash in Debug on macOS (I have no idea why this fixes it!?)
* server : refactor ctx_sampling init + n_ctx + names
* server : bug fix for prompt caching
* Do not save/load image_data to localStorage
* editorconfig : new line in index.html
* server : completion requests remember slot_id
* Update readme to document multimodal in server
* server : minor style
* Update readme to document multimodal in server
* server : hide ctx_sampling->prev behind API (#3696)
* server : apply fix from #3722
* server : fix slot reuse
* server : add comment about changing slot_state to bool
---------
Co-authored-by: FSSRepo <go778sgt@gmail.com>
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Steward Garcia <57494570+FSSRepo@users.noreply.github.com>
Co-authored-by: Jhen-Jie Hong <iainst0409@gmail.com>
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
* infill tokens correction
* serverinfill tokens correction
* removing any leading whitespace from infill suffix and removing leeading space token from suffix when params.escape
* removing any leading whitespace from infill suffix and removing leeading space token from suffix when params.escape
* only rm when params.escape, rm space if possible which is added back or rm added space token
* only rm when params.escape, rm space if possible which is added back or rm added space token
* Revert "only rm when params.escape, rm space if possible which is added back or rm added space token"
This reverts commit 63ba0b621f.
* fix interactive prompt escaping and fix server infill leading space handling
* rm unnecessary bool check
* process escapes for neg prompt and interactive consec prompts
* removed unneccessary static string escape
* check whether platform is 390x if yes->do not import immintrin.h
* support s390x big endian
* support --bigendian option for s390x
1. verified with baichuan7b-chat with float 16 on s390x
2. verified with baichuan7b-chat
3. verified with chinese-alpaca-2-13b-f16
* update format based on editor-config checker result
* Update convert-baichuan-hf-to-gguf.py
* 1. check in ggml.c if endianess is not match
2. update GGUF version
3. change get_pack_prefix to property
4. update information log
* always use "GGUF" as beginng of GGUF file
* Compare "GGUF" with file header char by char
1. Set GGUF_MAGIC to "GGUF" string instead of int value
2. Compare "GGUF" char by char to ensure its byte order
3. Move bytes swap code from convert.py to gguf.py write_tensor_data
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Added documentation of JSON return value of /completion endpoint
* Update examples/server/README.md
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Rewrite special token handling from #1931
* shorten param name, add st verification by type
* use offsets instead of copy by substr
* formatting, remove copying iterator on delete
* llama : normalize code-style
* swift fix
* print pfx/sfx if verb, main: split pfx input sfx
* dont add space when using special tokens
* minor : comment + spacing
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* WIP: start implementing LLaVA
* rm scratch buf for now, will revert after cleanup
* LLaVA image encoder is working. will combine with llama
* Add llava inference code, but it's buggy. debugging
* LLaVA is working e2e, needs to optimize memory allocation + cleanup
* Use ggml_allocr + rm unnecessary code
* fix: crlf -> lf
* fix: new line at EoF
* fix: trailing whitespace
* Add readme
* Update readme
* Some cleanup
* Are you happy editorconfig?
* rm unused batch image preprocessing
* rm unused import
* fix: rm designated initializers
* introduce pad-to-square mode for non-square images
* are you happy editorconfig?
* gitignore /llava
* Handle cases where image file does not exist
* add llava target to Makefile
* add support for 13b model variant
* Maybe seed is unlucky?
* Check if apples are compared to apples
* are you happy editorconfig?
* Use temperature = 0.1 by default
* command line: use gpt_params_parse()
* minor
* handle default n_predict
* fix typo
* llava : code formatting, rename files, fix compile warnings
* do not use Wno-cast-qual for MSVC
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Fix mirostat state when using multiple sequences
* Fix mirostat by completely refactoring sampling!
* Try to fix zig build.
* Export function to fetch/create default sampler states
Code formatting cleanups and add some comments
Silence a warning about id not being used when logging is disabled
* Apply some renaming suggestions.
Fix comments that were out of sync with the pull.
* Use more consistant naming convention for sampling contexts
* infill tokens correction
* serverinfill tokens correction
* removing any leading whitespace from infill suffix and removing leeading space token from suffix when params.escape
* removing any leading whitespace from infill suffix and removing leeading space token from suffix when params.escape
* only rm when params.escape, rm space if possible which is added back or rm added space token
* only rm when params.escape, rm space if possible which is added back or rm added space token
* Revert "only rm when params.escape, rm space if possible which is added back or rm added space token"
This reverts commit 63ba0b621f.
* fix interactive prompt escaping and fix server infill leading space handling
* rm unnecessary bool check
* vvhg-code-infill (#1)
* infill in separate example (#2)
* reverted changes to main and added infill example
* cleanup
* naming improvement
* make : add missing blank line
* fix missing semicolon
* brought infill up to current main code
* cleanup
---------
Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com>
* llama.cpp : split llama_context_params into model and context params
ggml-ci
* fix metal build
* fix freq_base/scale default to model value
* llama-bench : keep the same model between tests when possible
* move n_threads to llama_context_params, add n_threads_batch
* fix mpi build
* remove kv_size(), cuda scratch fixes
* remove low-vram option
* add n_threads_batch to system info, refactor to get_system_info()
* add documentation about --threads-batch to the READMEs
* llama-bench fix
* main : fix rope freq/scale warning
* llama.cpp : add llama_get_model
common : add llama_tokenize from model
* remove duplicated ctx/model functions
ggml-ci
* cuda : print total VRAM used
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train
* remove unnecessary Adam(W) optimizer tensors.
reduces optimizer memory overhead from 7*modelsize to 2*modelsize.
additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t.
bumps training checkpoint file version, but old checkpoints can still be read.
new version with less tensors is saved.
* add gradient clipping to AdamW
* Fix reset of unused g->nodes and g->grads to NULL
* implement gradient checkpointing for training
reduces memory overhead from O(n_layer) to O(sqrt(n_layer))
as explained in readme of https://github.com/cybertronai/gradient-checkpointing
* remove unused compute buffer 3
* add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
* change AdamW decay parameter to work like the torch AdamW decay parameter
It is now relative to Adam learning rate `alpha*sched`.
Before that it was relative to `sched` only.
`alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1]
* change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT
* change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW
btw: the default weight decay parameter for torch.optim.AdamW is 0.01
* bug fixes for cross entropy loss
ggml_cross_entropy_loss: sums where not correctly added in workload of each thread
ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues
guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16
cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup.
so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance.
* fix test-grad0 for cross_entropy_loss
the second argument to cross_entropy_loss must sum up to 1 for each row
* fix test-grad0 for soft_max
dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)
* improve finite differences of test-grad0 by using double instead of float
* change cross_entropy_loss to output average over all rows
this helps keeping the loss and gradients in a sane range
* improve gradient checkpointing
sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal.
since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different:
```
given: n, u, v
objective: minimize(a*u+b*v) where a*b=n, a>0, b>0
b=n/a
minimize(a*u+v*n/a)
diff(a*u+v*n/a, a) = u - (v*n/a)/a
diff(a*u+v*n/a, a) == 0
u - (v*n/a)/a == 0
u == v*n/(a*a)
u*a*a = v*n
a*a = v*n/u
a = sqrt(n*v/u)
```
this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage.
* disable gradient checkpointing debug output
* llama : fix rope usage in train-text-from-scratch after ChatGLM change
* add more training parameters:
--enable-restart N Only for Adam optimizer. Enable restarts of cos-decay
--disable-restart N Only for Adam optimizer. Disable restarts of cos-decay
--opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero.
--opt-delta N Maximum delta for delta convergence test. Disabled when <= zero.
--opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero.
--adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero.
--adam-min-alpha N Adam minimum learning rate alpha, usually 0.1 * alpha
* replace memcpy with reshape operation so that the graph is not cut at the input
this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it
* remove unused function argument from get_example_targets_batch
* measure and print total training time
* add optimization callback to ggml_opt_resume_g
this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)).
can be used for dynamic learning schedule and setting input data for batches before each iteration
* use optimization callback in training
allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters
reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration
* add minimum number of tensor dimensions to apply weight decay (default 2)
this allows to not apply weight decay to bias parameters
* rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup
* fix increase of model.train_samples and model.train_tokens
now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations
* change sampling parameters for prediction after training to defaults of common.h
and clarify what is context for prediction and what are generated tokens
* tighten abs error bounds for cross_entropy_loss in test-grad0
* add conditional compilation of using F16 exp in flash attention
uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention
* tighten abs error bounds for flash_attn in test-grad0
* tighten abs error bounds for sqrt in test-grad0
* remove out-commented vectorized code of opt_adam
the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead
* ggml : update ggml_rms_norm_back with configurable eps
* llama training : fix ggml_rms_norm_back calls to pass configurable eps
* remove trailing whitespace
* add train function using automatic gradient checkpointing backward pass and allocator
* in train function replace add_inplace by regular add
because using add_inplace seems to result in different gradients
* don't use allocate hash_map on context
because the context has no_alloc=True when using memory allocator resulting in NULL data pointers
* correctly clone reshape and permute operations by also cloning tensor->nb values
* fix variable name and add missing type cast
* terminate recursive tensor cloning when reaching tensor without src tensors
* correctly clone view tensors by setting data pointers
without this the checkpointing would only work when being used together with memory allocator
* fix variable names
* swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn`
* add input tensors as checkpoints
so that recursive tensor cloning of gradient checkpointing terminates on input tensors
* fix variable name and add missing boolean negation
* make sure some tensors are not reallocated by inserting new temporary nodes depending on them:
output and parameter gradient tensors need to be available at the end of the graph execution
parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration
checkpoint tensors are allocated all together to reduce memory allocator fragmentation
afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs
* fix ASSERT to work with zero layers
* add training options whether to use allocator and/or unified training function
* integrate unified training function which may use memory allocator
the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing
* format name of cloned tensors with " (clone)" suffix
* set names for tensors in unified train function for easier debugging
* allocate graph on context using ggml_new_graph
* remove handwritten training functions
* remove unused training parameters "use_scratch" and "use_unified"
* remove trailing whitespace
* remove unused train params: mem_compute1_gb & mem_compute2_gb
mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions
mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)
* remove unused forward_batch function
* add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly
* only use ggml_allocr_alloc when tensor has NULL data and is no view
* fix test when to create temporary backward graph
temporary backward graph is only necessary when using checkpointing
* fix memory "leak" in optimizers
each iteration a new cplan with new memory for work data was allocated.
now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data.
* reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator
with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory.
the computation results are the same
* add API functions to access llama model tensors
* add stub example for finetuning, based on train-text-from-scratch
* move and remove code
* add API functions to access remaining model parameters:
mult, head and rot
* first draft for LORA finetune training
* remove const model and layer arguments in API functions for accessing model tensors
* bug fixes to make finetune compile
automatic allocator does not work yet
* add debug prints for training memory improvements
* fix names of lora tensors
* avoid stack overflow resulting from big ggml_cgraph
replace stack allocation and ggml_build_forward by ggml_new_graph in combination with ggml_build_forward_expand
* replace llama API functions to get model tensors by one function to get model tensor by name
LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
* remove unused call to not existing llama_get_layer_from_model
* implement ggml_compute_forward_out_prod_q_f32
* remove trailing whitespace
* add lora finetune support on quantized base model tensors
* add ggml_add_cast API function
this function works like ggml_add, but accepts a data type for the resulting tensor.
only supported for quantized src0 input.
* use ggml_add_cast in finetuning
lora-applied weights will now have data type F32, which improves gradients when finetuning quantized base models
* bug fix: actually use result type passed to ggml_add_cast
* make sure base model tensors data cannot be used in viewable operations
memory allocator would try to make lora application inplace on base model tensors.
since those are memory mapped this will result in memory access violations
* fix bug in ggml_out_prod which resulted in wrong n_dims of result tensors
* avoid keeping in memory ALL of the gradients
The problem here stems from ggml_graph_reset. This function is called in the optimization function, before each graph computation, to reset the gradients to zero. This required a unique memory slot for each gradient: allocating memory from a previosly freed memory location might lead to non-zero input gradients.
During ggml_compute_backward the gradients are build stepwise by adding or substracting new values, starting from a OP_NONE tensor which needs to contain zero-values. This requires the graph reset.
To avoid this I now remember in ggml_build_backward_expand the original OP_NONE gradient tensors in a hash table, which is passed to ggml_compute_backward. There instead of using add (or sub or similar) I test whether the existing gradient to be changed is a zero-valued-tensor by looking up its existence in the hash table. When it is such a zero-tensor it will not be modified, but replaced by the value to be added, otherwise the regular add (not inplace, allocator will take care of this) will be used. This way none of those zero-tensor values will be necessary in the final backward graph and more importantly they won't need a unique memory slot, just to make them zero.
* remove trailing whitespace
* remove debug prints and function to compute tensor data hash
* improve optimization iteration prints
* adjust maximal values to support finetuning 3B models
* change default finetune params lora_r and lora_alpha to match the n_rank parameters of 4
* bug fix: make sure finetune input gradient is allocated at begin and kept until end
* remove unnecessary src tensor from ggml_get_rows_back
we don't need data of src[2] for computation, only to setup the correct output shape.
remove dependency on src[2], so that allocator can work more freely.
the computational graph is still completely determined, because the output shape is naturally included.
this is similar to how ggml_reshape does it.
* remove unnecessary src tensor from ggml_repeat & ggml_repeat_back
we don't need data of src[1] for computation, only to setup the correct output shape.
remove dependency on src[1], so that allocator can work more freely.
the computational graph is still completely determined, because the output shape is naturally included
* resolve todo
allocator will only make it inplace when they are of the same type
* mixing multiple LORA adapters is now possible
pass more than one '--lora FNAME' argument to apply more than one LORA.
use '--lora-scaled FNAME S' when you want to specify a user-defined scale for an adapter.
* add option to save finetune output every N iterations
* also save latest finetune output with ITERATION="LATEST" and print where files are saved
saving with LATEST makes it easier to resume training from the latest checkpoint
the string "LATEST" can be configured with command line option "--fn-latest STR"
* update checkpoint train stats before saving via "--save-every"
* add command line option `--rank-wo N` for rank of wo tensor
* update finetune README
* fix dump_non_result_info_yaml to output multiple lora adapters
* bug fix: replace GGML_TYPE_SIZE[t] by ggml_type_size(t)
* replace llama_n_mult by llama_n_ff
* finetune bug fixes to compile with merged in code from master
* remove prediction related code to reduce duplicated code with main
use main instead
* reduce large memory overhead in train-text-from-scratch
all gradients had to be pinned so that graph_reset works correctly.
this is no longer necessary with the changes to ggml_compute_backward introduced in this PR.
* add comment explaining why finetune checkpoints are allocated in one block
* make default value of float member a float literal
* handle rms_norm and rope parameters the same as in train-text-from-scratch
* remove unused code
* remove vocab related code as it is unnecessary
* add LLM_KV_TRAINING_TYPE to train-text-from-scratch checkpoints
so that they can be differentiated from lora finetune checkpoints
* add gguf constants and load/save functions from train-text-from-scratch
* add load & save lora finetune checkpoints via gguf
* add python script to convert old finetune checkpoint files to gguf
* remove old checkpoint save & load code
* remove code to print data checksums which was used to verify correctness of new gguf code
* omit tokenization when training is disabled, only save llama lora adapter
training can be disabled by passing '-n 0' to finetune
* remove trailing whitespace
* update README.md
* implement ggml_compute_forward_repeat_f16
* avoid stack overflow of large cgraphs in test-grad0
* add ggml API functions ggml_unravel_index, ggml_get_i32_nd and its analogs for set and for f32
ggml_get_i32_1d, ggml_set_i32_1d, ggml_get_f32_1d, ggml_set_f32_1d now support non-contiguous tensors.
in case of non-contiguous tensor, the 1d index is unraveled into a multi index using ggml_unravel_index to be passed to '_nd' function equivalent.
this fixes a bug in test-grad0 which happens due to ggml_build_backward not building purely contiguous tensors anymore
* increase test-grad0 context mem size to accommodate for bigger cgraph
* add sanity check to ggml_compute_backward, asserting the correct shape of gradients
* fix ggml_acc_or_set to return tensor of correct shape
* remove unused 'inplace' argument from ggml_compute_backward function
inplace operations to add gradients are no longer created by ggml_compute_backward
use allocator to automatically make inplace operations
* add missing argument 'int i0' to ggml_get_i32_nd & ggml_set_i32_nd header declarations
* fix error message in ggml_allocr_alloc to display actual max_avail
* fix check_gradient
ggml_build_backward_expand was previously replaced by ggml_build_backward, but the assignment of forward graph to backward graph missing
* use tensor->view_src instead of ggml_is_view and get_view_source
* move gradient checkpointing code into ggml, new API function:
// build gradient checkpointing backward graph gb for gf using provided checkpoints
// gb_tmp will contain original backward graph with rewritten backward process nodes,
// but without the second forward pass nodes.
GGML_API void ggml_build_backward_gradient_checkpointing(
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
struct ggml_cgraph * gb_tmp,
struct ggml_tensor * * checkpoints,
int n_checkpoints);
* replace custom data getters and setters by ggml functions
* train-text-from-scratch can train (full finetune) gguf models
just pass the gguf model via `--checkpoint-in FN`.
after this, to continue training, pass the generated checkpoint instead of the original gguf model.
tested with smaller models, bigger models may exceed available memory.
use (LORA) finetune for those.
* remove trailing whitespace
* add option to save train-text-from-scratch output every N iterations
* update README.md
* fix warnings
* fix warnings
* remove finetune option to disable allocator
the allocator should always be used.
by making sure that it is always used it gets easier to implement automatic memory requirements computation
* add tensor checkpoints only when gradient checkpointing is enabled
* initialize opt ggml context if none was provided
* add ggml-alloc API function 'ggml_allocr_max_size' to get max size of alloc
GGML_API size_t ggml_allocr_max_size(struct ggml_allocr * alloc);
* finetune: automatically allocate all memory and changes to command line options
remove '--n_examples N' parameter, as it no longer makes sense to call optimization process multiple times in a loop.
add '--only_write_lora' command line option: will skip tokenization and training, to only write a llama.cpp comptabile LORA adapter.
remove memory buffer related command line options.
improve iteration console output.
* add finetune to Makefile
* update README.md
* print time per iteration and estimate remaining time
* increase measured alloc size by tensor_alignment
ggml_allocr_reset will reduce the given size by up to tensor_alignment-1
* fix README.md
* add some more allocator debug prints
* bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue
* revert last commit
"bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue"
"alloc was freeing an externally allocated tensor, because it calculated the end of allocator memory as alloc->data + alloc->max_size instead of alloc->data + alloc->size."
This is intentional to reduce the risk of freeing external tensors when measuring. Unless max_size is not properly calculated, I don't see why this is an issue.
* remove unnecessary "0x" before "%p" output
* move measurement memory segment to upper region of the address space
* update README.md
* fix printf format warnings
* add missing gguf_free in load_checkpoint_lora_file
* load default rms_norm and rope parameters from base model
* add gradient accumulation
specify number accumulation steps with '--grad-acc N'.
this will simulate a bigger batch size of grad_acc*batch.
* fix tracking of train_samples and train_tokens
* build : fix compile warnings
* ggml : fix L-BFGS linesearch loop
* improve finetune time measurement
fix printf warnings on system where int64_t is (long int).
change time datatypes to double because values get big with long training times.
exclude file saving from time measurement.
converge faster to actual time per iteration by removing very small first duration before first iteration was performed.
fix bug in output of total training time, the reported value was 1000 times to small.
* specify default lora rank with '--lora-r N'
'--lora-r N' will specify default rank for all tensors
'--rank-wq N', etc. will override this default rank for specific tensor types.
* fix gradient accumulation bug where the same batch was used for each microstep
* fix gradient accumulation bug where the same batch was used for each microstep
* support grouped-query-attention in ggml_flash_attn and ggml_flash_attn_back
k and v can now be repeated in q along ne[2]
in forward pass just use modulo to compute k and v indices, like ik2 = iq2 % nek2.
in backard pass this won't work as easy, because multiple threads will compete to accumulate to the same k->grad[:,ik1,ik2,ik3] and v->grad[:,iv1,iv2,iv3].
so we change the parallelization over q rows to be over k rows. this ensures non-overlapping (ik2,ik3) across threads.
in each thread we then iterate over the number of repetitions of k/v in q to compute iq2 as iq2 = ik2 + irep*nek2.
since ne2 is not the same for q,k and v we also change how the gradients are concatenated into the result tensor.
additionally the offsets of gradq, gradk and gradv in the result tensor are now memory aligned.
we also simplify the compute_backward part of flash_attn to use ggml_reshape instead of switching over the number of dimensions.
this needs a small change to ggml_reshape, removing the assertion of second argument to be contiguous.
since only the shape (ne) of the second reshape argument is of relevance, its memory layout (nb) is irrelevant -> it can very well be non-contiguous.
change test-grad0 to also test for repeated k/v in q.
this changes the rng and now results in small gradient differences in softmax. these solely come from using f16 exp table lookup in forward softmax: when temporarily changing softmax to use actual exp function, the reported gradient differences go away. gradient differences coming solely from f16 table lookup are acceptable.
added a note to explain this.
* add llama API functions to get grouped-query-attention n_head parameter 'n_head_kv'.
* fix finetune to support grouped-query-attention (using flash-attention)
note: ggml changes to ggml_out_prod are necessary to support grouped-query-attention without flash-attention.
* support broadcastable a in out_prod(a, b) and backward pass of broadcasting mul_mat(a, b)
* test broadcasting mul_mat backward pass
* decouple random number generator of each operation test
when changing one test the rng of others tests is not influenced anymore
* add comment briefly describing what ggml_repeat_back does
* simplify broadcasting mul_mat backward using ggml_repeat_back
* add cgraph evaluation order member and corresponding enum type
this controls in which order ggml_build_forward visits source nodes.
by default the nodes are visited left to right, i.e. src[0] first.
in some cases it is beneficial for ggml-alloc to visit in a different order.
two possible orders are supported: left-to-right (src[0] first) and right-to-left (src[0] last).
* measure max compute size for each cgraph eval order and use best order
this can bring huge memory savings:
e.g. codellama-34b with n_ctx=64, n_batch=1 goes from 92927.8mb down to 4627.6 MB
* remove unused command line options
* add sample start patterns and options to force new or by default resume last shuffling
* update shuffle rng state on reshuffle
* exclude known zero values from computations in flash_attn_f32 & flash_attn_back_f32
* remove probably unnecessary exception type flags from stringstream
* pass correct max number of tokens to llama_tokenize
* account for possible leading whitespace that will be added by tokenizer
e.g. '\t' will be tokenized by llama spm tokenizer to [29871, 12]
* use unrolled vec_mad in out_prod
y is vec_mad result vec.
x is vec_mad input vec.
v is vec_mad input scalar.
ggml_vec_mad_f32_unroll will internally loop over x and v with same y.
GGML_VEC_MAD_UNROLL is by default defined to 32.
This value is empirical optimized using performance test runs of out-prod in openllama-3b finetune with 256 context length and batch size 1. It gives 23% performance boost for out_prod.
Full measurements of out-prod runtime in ms:
unroll_xv unroll_yv
1 67014.643 87826.469
2 77117.552 89077.656
4 72091.311 109121.657
8 61077.543 88678.334
16 56914.67 79514.947
24 59024.595 84350.254
28 55952.446 83368.73
32 51476.658 85177.745
36 55973.792 84659.92
40 55139.616 93844.738
48 60736.392 93330.267
64 99856.878 116994.99
Second column is when unrollying yv instead of xv
* set lora_alpha to value of lora_r if it is not set via command line
otherwise only changing lora_r will change scaling of lora adapter used in prediction
* reshuffle original sample order instead of the previous shuffled order
otherwise resumed reshuffle will not result in same sample order
* block tiling for out-prod inspired by mul-mat
block sizes are empirically optimized
roughly doubles the flops of out-prod
* exclude some more known zero values from computations in flash_attn_f32 & flash_attn_back_f32
* add static keywords
* remove outcommented old code
* update train-text-from-scratch with tokenization, sample selection and shuffling from finetune
* remove lbfgs related train parameters
* move common train functions into common/train.[h|cpp]
* move train state into struct train_state
* move train data saving code into callback to unify code of opt_callback
train_params are still different in finetune and train-text-from-scratch, so it can't yet be moved to train.h|cpp
* move common train params into common/train
* move common opt_callback into common/train
* fix consume_common_train_arg
* save and load head_count_kv in lora checkpoints
* increase train_samples by used_samples instead of number of batches
on batch can contain more than one sample when option "fill_with_next_samples" is used
* fix usage of llama_tokenize
* remove static from process_escape since we need it exposed in header
* fix code formating of long function declarations
* fix condition in load_train_state_gguf
* use die("msg") instead of replace GGML_ASSERT(!"msg") or throw std::runtime_error("msg")
* fix saving and loading of training type
* remove terminating '\0' from tokenization
(llama_tokenize is now passed the string length instead of relying on terminating '\0')
* fix compile warnings
* fix compile warnings
* use new/delete for train_state instead of malloc/free
using malloc may result in seg faults when trying to assign string fields
* assert that sample_count > 0, avoiding division by zero
* fix frand to return value in interval [0,1)
* add train option "--sample-random-offsets"
Use samples beginning at random offsets.
The offset is only applied to the first sample in each batch context window.
Together with "--fill-with-next-samples" this may help for training endless text generation.
For example given a dataset containing samples "abcd", "ABCD", "0123".
With context size of 8 and options "--fill-with-next-samples", "--no-separate-with-eos", "--no-separate-with-bos",
the context windows of batches could only be filled with "abcdABCD", "ABCDabcd", "0123abcd", etc.
With "--sample-random-offsets" it can also be filled with "23abcdAB", "bcd0123A", etc.
* deduplicate code into function
* remove n_rot hparam, as it must always be hparam.n_embd_head()
* align code
* assert correct base model tensor shapes
* move some params from lora hparams into model hparams and load model params from gguf
this equalizes the model definition in finetune and text-from-scratch and removes the need for additional llama api functions to get model parameters
* remove now unnecessary llama API functions to get model params that where added by this PR
* train-text-from-scratch: automatically allocate model tensors, remove option '--mem-model N'
* train-text-from-scratch: automatically allocate opt context
* train-text-from-scratch: automatically allocate input tensors
* train-text-from-scratch: automatically allocate compute memory
* remove unused options and equalize train-text-from-scratch with finetune
* initialize opt->loss_after with zero
* add export-lora program
* remove trailing whitespace
* add export-lora build in Makefile
* remove unused struct tensor_info from export-lora
* add export-lora build dependency to llama
because it depends on common, which depends on llama
* update finetune README.md
* cancel optimization when specified number of epochs is completed
* improve handling of export-lora arguments
print errors and warnings when files could not be read or created
* Fix export-lora.cpp "not enough space in the context's memory pool" (#1)
* Fix export-lora.cpp "not enough space in the context's memory pool"
Without this patch, export-lora would sometimes error with "not enough space in the context's memory pool (needed 656784, available 656800)".
* increase required context size by 5*GGML_MEM_ALIGN instead of plain 16
---------
Co-authored-by: xaedes <xaedes@gmail.com>
* improve handling of not yet supported tensor types
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: meatbag-18a <145869052+meatbag-18a@users.noreply.github.com>
* Resync my fork with new llama.cpp commits
* examples : rename to use dash instead of underscore
* New model conversions
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Fix für #2721
* Reenable tokenizer test for LLaMa
* Add `console.cpp` dependency
* Fix dependency to `common`
* Fixing wrong fix.
* Make console usage platform specific
Work on compiler warnings.
* Adapting makefile
* Remove trailing whitespace
* Adapting the other parts of the makefile
* Fix typo.
* Fixing the last deviations from sentencepiece indicated by test-tokenizer-1
* Simplify logic
* Add missing change...
* Fix ugly compiler warning
* llama_tokenize should accept strings containing NUL now
* Adding huichen's test case
* Keep static libs and headers with install
* Add logic to generate Config package
* Use proper build info
* Add llama as import library
* Prefix target with package name
* Add example project using CMake package
* Update README
* Update README
* Remove trailing whitespace
* Do not use _GNU_SOURCE gratuitously.
What is needed to build llama.cpp and examples is availability of
stuff defined in The Open Group Base Specifications Issue 6
(https://pubs.opengroup.org/onlinepubs/009695399/) known also as
Single Unix Specification v3 (SUSv3) or POSIX.1-2001 + XSI extensions,
plus some stuff from BSD that is not specified in POSIX.1.
Well, that was true until NUMA support was added recently,
so enable GNU libc extensions for Linux builds to cover that.
Not having feature test macros in source code gives greater flexibility
to those wanting to reuse it in 3rd party app, as they can build it with
FTMs set by Makefile here or other FTMs depending on their needs.
It builds without issues in Alpine (musl libc), Ubuntu (glibc), MSYS2.
* make : enable Darwin extensions for macOS to expose RLIMIT_MEMLOCK
* make : enable BSD extensions for DragonFlyBSD to expose RLIMIT_MEMLOCK
* make : use BSD-specific FTMs to enable alloca on BSDs
* make : fix OpenBSD build by exposing newer POSIX definitions
* cmake : follow recent FTM improvements from Makefile
* build : on Mac OS enable Metal by default
* make : try to fix build on Linux
* make : move targets back to the top
* make : fix target clean
* llama : enable GPU inference by default with Metal
* llama : fix vocab_only logic when GPU is enabled
* common : better `n_gpu_layers` assignment
* readme : update Metal instructions
* make : fix merge conflict remnants
* gitignore : metal
* Allow quantize tool to only copy tensors to allow repackaging models.
* Slightly better logic when requantizing.
* Change help message to go to `stdout`.
* llama2c : fix segfault if vocab is not found
* llama2c : fix mismatch between new[] and delete
* llama2c : fix basename on Windows
* llama2c : use a destructor to prevent memory leaks
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train
* remove unnecessary Adam(W) optimizer tensors.
reduces optimizer memory overhead from 7*modelsize to 2*modelsize.
additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t.
bumps training checkpoint file version, but old checkpoints can still be read.
new version with less tensors is saved.
* add gradient clipping to AdamW
* Fix reset of unused g->nodes and g->grads to NULL
* implement gradient checkpointing for training
reduces memory overhead from O(n_layer) to O(sqrt(n_layer))
as explained in readme of https://github.com/cybertronai/gradient-checkpointing
* remove unused compute buffer 3
* add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
* change AdamW decay parameter to work like the torch AdamW decay parameter
It is now relative to Adam learning rate `alpha*sched`.
Before that it was relative to `sched` only.
`alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1]
* change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT
* change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW
btw: the default weight decay parameter for torch.optim.AdamW is 0.01
* bug fixes for cross entropy loss
ggml_cross_entropy_loss: sums where not correctly added in workload of each thread
ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues
guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16
cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup.
so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance.
* fix test-grad0 for cross_entropy_loss
the second argument to cross_entropy_loss must sum up to 1 for each row
* fix test-grad0 for soft_max
dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)
* improve finite differences of test-grad0 by using double instead of float
* change cross_entropy_loss to output average over all rows
this helps keeping the loss and gradients in a sane range
* improve gradient checkpointing
sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal.
since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different:
```
given: n, u, v
objective: minimize(a*u+b*v) where a*b=n, a>0, b>0
b=n/a
minimize(a*u+v*n/a)
diff(a*u+v*n/a, a) = u - (v*n/a)/a
diff(a*u+v*n/a, a) == 0
u - (v*n/a)/a == 0
u == v*n/(a*a)
u*a*a = v*n
a*a = v*n/u
a = sqrt(n*v/u)
```
this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage.
* disable gradient checkpointing debug output
* llama : fix rope usage in train-text-from-scratch after ChatGLM change
* add more training parameters:
--enable-restart N Only for Adam optimizer. Enable restarts of cos-decay
--disable-restart N Only for Adam optimizer. Disable restarts of cos-decay
--opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero.
--opt-delta N Maximum delta for delta convergence test. Disabled when <= zero.
--opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero.
--adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero.
--adam-min-alpha N Adam minimum learning rate alpha, usually 0.1 * alpha
* replace memcpy with reshape operation so that the graph is not cut at the input
this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it
* remove unused function argument from get_example_targets_batch
* measure and print total training time
* add optimization callback to ggml_opt_resume_g
this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)).
can be used for dynamic learning schedule and setting input data for batches before each iteration
* use optimization callback in training
allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters
reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration
* add minimum number of tensor dimensions to apply weight decay (default 2)
this allows to not apply weight decay to bias parameters
* rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup
* fix increase of model.train_samples and model.train_tokens
now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations
* change sampling parameters for prediction after training to defaults of common.h
and clarify what is context for prediction and what are generated tokens
* tighten abs error bounds for cross_entropy_loss in test-grad0
* add conditional compilation of using F16 exp in flash attention
uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention
* tighten abs error bounds for flash_attn in test-grad0
* tighten abs error bounds for sqrt in test-grad0
* remove out-commented vectorized code of opt_adam
the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead
* ggml : update ggml_rms_norm_back with configurable eps
* llama training : fix ggml_rms_norm_back calls to pass configurable eps
* remove trailing whitespace
* add train function using automatic gradient checkpointing backward pass and allocator
* in train function replace add_inplace by regular add
because using add_inplace seems to result in different gradients
* don't use allocate hash_map on context
because the context has no_alloc=True when using memory allocator resulting in NULL data pointers
* correctly clone reshape and permute operations by also cloning tensor->nb values
* fix variable name and add missing type cast
* terminate recursive tensor cloning when reaching tensor without src tensors
* correctly clone view tensors by setting data pointers
without this the checkpointing would only work when being used together with memory allocator
* fix variable names
* swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn`
* add input tensors as checkpoints
so that recursive tensor cloning of gradient checkpointing terminates on input tensors
* fix variable name and add missing boolean negation
* make sure some tensors are not reallocated by inserting new temporary nodes depending on them:
output and parameter gradient tensors need to be available at the end of the graph execution
parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration
checkpoint tensors are allocated all together to reduce memory allocator fragmentation
afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs
* fix ASSERT to work with zero layers
* add training options whether to use allocator and/or unified training function
* integrate unified training function which may use memory allocator
the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing
* format name of cloned tensors with " (clone)" suffix
* set names for tensors in unified train function for easier debugging
* allocate graph on context using ggml_new_graph
* remove handwritten training functions
* remove unused training parameters "use_scratch" and "use_unified"
* remove trailing whitespace
* remove unused train params: mem_compute1_gb & mem_compute2_gb
mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions
mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)
* remove unused forward_batch function
* add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly
* only use ggml_allocr_alloc when tensor has NULL data and is no view
* fix test when to create temporary backward graph
temporary backward graph is only necessary when using checkpointing
* fix memory "leak" in optimizers
each iteration a new cplan with new memory for work data was allocated.
now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data.
* reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator
with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory.
the computation results are the same
* add missing lctx argument to get_example_targets_batch
* implement llama model file saving using gguf
checkpoint loading and saving disabled, to be replaced by loading and saving via gguf
* implement loading/saving of checkpointing files using GGUF
* bug fixes
* add checkpoint file version for future compatibility
* update readme with gguf filenames
* save & load opt->just_initialized value
* add first draft for checkpoint conversion script
* add gguf arch and ftype
* save opt parameter counter as uint64
* add gguf key and tensor names for optimizer and training
* add layer_norm_rms_eps to checkpoint convert script
* use same GGUF_GET_KEY macro as in llama.cpp
* use norm_rms_eps, and rope parameters and command line options to set them
* fix memory corruption bug in gguf
ctx->kv and ctx->infos was reallocated using not-aligned realloc, but freed with aligned free.
to fix this a GGML_ALIGNED_REALLOC was added, but there is no posix_memalign_realloc function.
so on non-windows and non-mingw32 platforms we fall back to aligned malloc, followed by copying
and freeing the old data.
* add gguf example cmake file
* bug fixes in tokenize_file
* bug fixes in load_llama_model_gguf
* bug fix: init model when no checkpoint was loaded
* bug fix in read_tensor_by_name
* bug fix in load_opt_context_gguf
* avoid printing lots of spaced on the unusual case that loss gets nan
* set name of tensors with empty name from what was read from gguf
* remove trailing whitespace
* print data checksums before saving and after loading to verify correctness
* bug fixes for convert-train-checkpoint-to-gguf
* temporarily add code to write old checkpoint files
used to verify that old checkpoint files are correctly converted to gguf
* bug fixes for convert-train-checkpoint-to-gguf.py loading checkpoints with opt_version=0
* remove code used to verify correctness of checkpoint file conversion
* remove trailing whitespace
* remove prediction related code
use main for prediction, it is better optimized
* update train-text-from-scratch README.md
* fix non-windows GGML_ALIGNED_REALLOC
* add missing blank line at end of file
* remove GGML_ALIGNED_REALLOC and use normal malloc/realloc/free for gguf ctx->kv & ctx->infos
* train : fix compile warnings
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama2.c: direct gguf output (WIP)
* Simplify vector building logic
* llama2.c gguf conversion: fix token types in converter
* llama2.c: support copying vocab from a llama gguf model file
* llama2.c: update default path for vocab model + readme
* llama2.c: use defines for gguf keys
* llama2.c: escape whitespaces w/ U+2581 in vocab converter the llama.cpp way
* llama2.c converter: cleanups + take n_ff from config
* Speedup tokenization
On current master it takes ~3.2 seconds to tokenize
Wikitext. With this change it becomes ~525 ms.
* Fixit: it was missing the piece after the last found occurence
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* tests : write a Python tokenizer test (wip)
* llama : prefix input text for tokenization with whitespace
* llama : distinguish pieces from decoded text + fix detokenization
* common : add comments
* examples : no longer manually add leading space when tokenizing
* tests : use Python to generate tokenizer tests for C++
* tests : add option to tokenize text files
ggml-ci
* tests : add test-tokenizer-1.py
* llama.cpp : fix LF token
* hellaswag : move the concat space for clarity
* tests : add falcon tests (py + cpp, currently do not pass Unicode)
ggml-ci
* common : temporary separate llama_detokenize calls for SPM and BPE
---------
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
* Fix bug in main.cpp where penalize_nl=false has no effect. It modifies the underlying logits array, but at this point we are already working on the candidates copy.
* Suppress redefinition warning for NOMINMAX on mingw. In my installation, this macro is already defined by /usr/lib/gcc/x86_64-w64-mingw32/11/include/c++/x86_64-w64-mingw32/bits/os_defines.h:45.
* main : fix indentation
* main : pass ctx to llama_token_nl()
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama.cpp : fix spm whitespace escaping + clean up
* main.cpp : spm - add whitespace in front of prompt
* test-tokenizer-0.cpp : spm - add whitespace in front of prompt
* Add llama_beam_search().
* Add '// Beam search' heading to llama.{h,cpp} after llama_grammar_accept_token().
* Add space around * pointers and & references.
* Add spaces around comparison and assignment operators.
* Prefer west const.
* Use llama_ prefix for structs in global namespace.
* Delete obsolete comment from an earlier revision.
* Change eos to eob in llama_beam and llama_beam_view structs.
* server : add n_probs param in chat UI
* server : keep message data array & show in probabilites component
* server : add simple popover component
* server : fix completion_probabilities undefined if not set n_probs
* server : implement Probabilites
* server : handle bytes
* server : make n_probs max to 10 for easy scroll
* server : adjust for dark/light mode
* server : Fix regenerated prompt
* server : update index.html.hpp
* server : convert prob to percentage + show original value as div title
* server : fix Probabilites not used if included empty str
* server : skip byte pair in display probabilites
* server : remove array check of completion_probabilities in messages
* skip empty array or byte pair (> 1) in Probabilites
* generate index.html.hpp
* fix incorrect prob convert if the str is already a known token
* use final response to show probabilities on stop
* revert unnecessary change
* correct probabilites usage
* remove unused function
* always send partial response for get correct probs of last to_send
* fix typo
* fix content of format_final_response
* refactor probs render & make pColor transparent if not found
* send empty string when got stop_pos in partial
* avoid unnecessary empty data event & send rest of partial tokens on stop
* use <br /> for new line
* skip -1 tok in loop to avoid send '' on end
* trim last new lines on stop
* revert unnecessary change
* use hipblas based on cublas
* Update Makefile for the Cuda kernels
* Expand arch list and make it overrideable
* Fix multi GPU on multiple amd architectures with rocblas_initialize() (#5)
* add hipBLAS to README
* new build arg LLAMA_CUDA_MMQ_Y
* fix half2 decomposition
* Add intrinsics polyfills for AMD
* AMD assembly optimized __dp4a
* Allow overriding CC_TURING
* use "ROCm" instead of "CUDA"
* ignore all build dirs
* Add Dockerfiles
* fix llama-bench
* fix -nommq help for non CUDA/HIP
---------
Co-authored-by: YellowRoseCx <80486540+YellowRoseCx@users.noreply.github.com>
Co-authored-by: ardfork <134447697+ardfork@users.noreply.github.com>
Co-authored-by: funnbot <22226942+funnbot@users.noreply.github.com>
Co-authored-by: Engininja2 <139037756+Engininja2@users.noreply.github.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
Co-authored-by: jammm <2500920+jammm@users.noreply.github.com>
Co-authored-by: jdecourval <7315817+jdecourval@users.noreply.github.com>
* Implementing strided computation of perplexity
* Alternative way to output PPL results
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* server: allow json array in prompt or content
We accept an array of strings and numbers representing tokens,
in addition to the current string valued prompt or content.
This allows direct token input, so that any special tokens
can be processed and used at the frontend during the construction
of the json data, before sending to the server. And the server
does not need to know or parse special tokens from textual input.
With this, we can use EOS and BOS used in llama-2-chat models.
* server: use tokenizePrompt(json) and default "" if empty prompt
* server: fix prompt check
* server: tokenize endpoint no longer adds BOS
* llama : add benchmark example
* add to examples CMakeLists.txt
* fix msvc build
* add missing include
* add Bessel's correction to stdev calculation
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* improve markdown formatting
* add missing include
* print warning is NDEBUG is not defined
* remove n_prompt and n_gen from the matrix, use each value separately instead
* better checks for non-optimized builds
* llama.cpp : fix MEM_REQ_SCRATCH0 reusing the value of n_ctx of the first call
* fix json formatting
* add sql output
* add basic cpu and gpu info (linx/cuda only)
* markdown: also show values that differ from the default
* markdown: add build id
* cleanup
* improve formatting
* formatting
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* support for templates in browser LocalStorage
* sync accepted #2409 fix from upstream
* convert autosave invocation to useEffect
* Apply suggestions from code review
Co-authored-by: Jhen-Jie Hong <iainst0409@gmail.com>
* Regen index.html.cpp, suggested from code review
---------
Co-authored-by: Jhen-Jie Hong <iainst0409@gmail.com>
* server : implement json-schema-to-grammar.mjs by follow python impl
* server : add grammar support in chat.mjs
* server : implement grammer param in the UI
* server : generate .hpp
* server : remove trailing whitespaces
* server : generate .hpp
* server : fix sort of prop pairs
* server : optimize regex & iteration
* Update Vim plugin
* Remove getbufoneline usage, Add input bind example.
getbufoneline() appears to be a recently added function and has been
replaced with getbufline for compatibility.
An additional example that explains how to add a keybind that works in
insert mode was added.
* examples : add JSON schema grammars
* complete JSON grammar
* ensure primitive types can be used as root of schema
* support integer type and adjust usage text
* fix hellaswag print format, cast away warning in test-double-float
* c++11 cannot use designated initializers
* add static to test-grad0.c internal functions
* use memcpy in test-double-float.c
* port c tests to c++
* use initializer list for ggml_init_params
* add `--in-prefix-bos` to prefix BOS to user inputs; keep EOS
The BOS precedes the string specified by `--in-prefix`.
Model generated EOS is now kept in the context.
It provides a way to strictly following the prompt format used in
Llama-2-chat.
The EOS handling also benefits some existing finetunes that uses
EOS to mark the end of turn.
* examples/common: move input_prefix_bos to other bools
* make rms_norm_eps a parameter
* add rms_norm_eps to command line
* fix baby llama, test-grad0
* use scientific notation for eps param in the help
ggml-ci
* makefile: correct deps for server
* server: tighten settings layout a little
* server: expose all currently configured generation params in UI
* server: expose remaining generation params, for the adventurous
* server: embetter mirostat fields
* llama, main : constrain sampling to grammar
* allow loading grammar from file
* fix whitespace errors
* handle & print parser errors
* add comments to grammar syntax and allow newlines where unambiguous
* add missing include
* support alternates in root rule
* fix bugs with empty token and EOS
* adjust JSON grammar
* remove swp file
* rewrite ternary expressions
Co-authored-by: Henri Vasserman <henv@hot.ee>
* use struct for grammar elements and add Unicode support
* add unicode escapes
* add inverse char ranges
* only sample full tokens (no peeking or truncation)
* llama : minor style changes
blindly applied in online editor - hopefully I didn't break something
* update help text
* add warning message if EOS is disabled
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Resync my fork with new llama.cpp commits
* examples : rename to use dash instead of underscore
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
A fix in Makefile for FreeBSD users. In the platfrom x86_64 is amd64. This fix resolve compilation using CFLAGS and CXXFLAGS with -march=native and -mtune=native
Add two examples for interactive mode using Llama2 models (thx TheBloke for models)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Miku.sh: Set default model to llama-2-7b-chat
* Miku.sh: Set ctx_size to 4096
* Miku.sh: Add in-prefix/in-suffix opts
* Miku.sh: Switch sampler to mirostat_v2 and tiny prompt improvements
* ci : run ctest
ggml-ci
* ci : add open llama 3B-v2 tests
ggml-ci
* ci : disable wget progress output
ggml-ci
* ci : add open llama 3B-v2 tg tests for q4 and q5 quantizations
ggml-ci
* tests : try to fix tail free sampling test
ggml-ci
* ci : add K-quants
ggml-ci
* ci : add short perplexity tests
ggml-ci
* ci : add README.md
* ppl : add --chunks argument to limit max number of chunks
ggml-ci
* ci : update README
* Implement customizable RoPE
The original RoPE has pre-defined parameters
theta_i = 10000^(−2(i−1)/d), for i in [1, 2, ..., d/2]
Our customizable RoPE, ggml_rope_custom_inplace, uses
theta_i = scale * base^(−2(i−1)/d), for i in [1, 2, ..., d/2]
with the default matches the original
scale = 1.0
base = 10000
The new command line arguments
--rope-freq-base
--rope-freq-scale
set the two new RoPE parameter.
Recent researches show changing these two parameters extends the context limit with minimal loss.
1. Extending Context to 8K
kaiokendev
https://kaiokendev.github.io/til#extending-context-to-8k
2. Extending Context Window of Large Language Models via Positional Interpolation
Shouyuan Chen, Sherman Wong, Liangjian Chen, Yuandong Tian
https://arxiv.org/abs/2306.15595
3. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation.
https://www.reddit.com/user/bloc97https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
For the bold, try adding the following command line parameters to your favorite model:
-c 16384 --rope-freq-base 80000 --rope-freq-scale 0.5
* ggml-metal: fix custom rope
* common: fix argument names in help
* llama: increase MEM_REQ_EVAL for MODEL_3B
It avoids crashing for quantized weights on CPU.
Better ways to calculate the required buffer size would be better.
* llama: make MEM_REQ_EVAL depend on n_ctx
* server: use proper Content-Type in curl examples
Without the header Content-Type: application/json, curl will POST with
Content-Type: application/x-www-form-urlencoded
Though our simple server doesn't care, the httplib.h used has a limit
with CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 8192
With Content-Type: application/json, we can send large json data.
* style : minor fixes, mostly indentations
* ggml : fix asserts
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Initial implementation
* Remove debug print
* Restore signature of llama_init_from_gpt_params
* Free guidance context
* Make freeing of guidance_ctx conditional
* Make Classifier-Free Guidance a sampling function
* Correct typo. CFG already means context-free grammar.
* Record sampling time in llama_sample_classifier_free_guidance
* Shift all values by the max value before applying logsoftmax
* Fix styling based on review
* MPI support, first cut
* fix warnings, update README
* fixes
* wrap includes
* PR comments
* Update CMakeLists.txt
* Add GH workflow, fix test
* Add info to README
* mpi : trying to move more MPI stuff into ggml-mpi (WIP) (#2099)
* mpi : add names for layer inputs + prep ggml_mpi_graph_compute()
* mpi : move all MPI logic into ggml-mpi
Not tested yet
* mpi : various fixes - communication now works but results are wrong
* mpi : fix output tensor after MPI compute (still not working)
* mpi : fix inference
* mpi : minor
* Add OpenMPI to GH action
* [mpi] continue-on-error: true
* mpi : fix after master merge
* [mpi] Link MPI C++ libraries to fix OpenMPI
* tests : fix new llama_backend API
* [mpi] use MPI_INT32_T
* mpi : factor out recv / send in functions and reuse
* mpi : extend API to allow usage with outer backends (e.g. Metal)
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* ggml_graph_compute: deprecate using ggml_context, try resolve issue #287
* rewrite: no longer consider backward compitability; plan and make_plan
* minor: rename ctx as plan; const
* remove ggml_graph_compute from tests/test-grad0.c, but current change breaks backward
* add static ggml_graph_compute_sugar()
* minor: update comments
* reusable buffers
* ggml : more consistent naming + metal fixes
* ggml : fix docs
* tests : disable grad / opt + minor naming changes
* ggml : add ggml_graph_compute_with_ctx()
- backwards compatible API
- deduplicates a lot of copy-paste
* ci : enable test-grad0
* examples : factor out plan allocation into a helper function
* llama : factor out plan stuff into a helper function
* ci : fix env
* llama : fix duplicate symbols + refactor example benchmark
* ggml : remove obsolete assert + refactor n_tasks section
* ggml : fix indentation in switch
* llama : avoid unnecessary bool
* ggml : remove comments from source file and match order in header
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
The original file name, `ggml-alpaca-7b-q4.bin`, implied the first-generation GGML. After the breaking changes (mentioned in https://github.com/ggerganov/llama.cpp/issues/382), `llama.cpp` requires GGML V3 now. Those model files are named `*ggmlv3*.bin`. We should change the example to an actually working model file, so that this thing is more likely to run out-of-the-box for more people, and less people would waste time downloading the old Alpaca model.
* use javascript generators as much cleaner API
Also add ways to access completion as promise and EventSource
* export llama_timings as struct and expose them in server
* update readme, update baked includes
* llama : uniform variable names + struct init
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update server instructions for web front end
* Update server README
* Remove duplicate OAI instructions
* Fix duplicate text
---------
Co-authored-by: Jesse Johnson <thatguy@jessejojojohnson.com>
* Generalize quantize_fns for simpler FP16 handling
* Remove call to ggml_cuda_mul_mat_get_wsize
* ci : disable FMA for mac os actions
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* expose simple web interface on root domain
* embed index and add --path for choosing static dir
* allow server to multithread
because web browsers send a lot of garbage requests we want the server
to multithread when serving 404s for favicon's etc. To avoid blowing up
llama we just take a mutex when it's invoked.
* let's try this with the xxd tool instead and see if msvc is happier with that
* enable server in Makefiles
* add /completion.js file to make it easy to use the server from js
* slightly nicer css
* rework state management into session, expose historyTemplate to settings
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: add option to output probabilities for completion
* server: fix issue when handling probability output for incomplete tokens for multibyte character generation
* server: fix llama_sample_top_k order
* examples/common.h: put all bool variables in gpt_params together
* add interface for float input
* fixed inpL shape and type
* add examples of input floats
* add test example for embd input
* fixed sampling
* add free for context
* fixed add end condition for generating
* add examples for llava.py
* add READMD for llava.py
* add READMD for llava.py
* add example of PandaGPT
* refactor the interface and fixed the styles
* add cmake build for embd-input
* add cmake build for embd-input
* Add MiniGPT-4 example
* change the order of the args of llama_eval_internal
* fix ci error
* Clean up compiler warnings in train-text
Some brackets to disambiguate order of operations
* Increase GGML_MAX_NAME
Avoiding strncpy danger in train-text-from-scratch and reducing potential future name length issues
* detect NUMA systems and pin work threads to nodes (linux)
* disable mmap prefetch/readahead for NUMA systems
* avoid sending finalize op to thread pool if it does nothing
* silence robot
* fix args
* make --numa a param
* recommendation that n_nodes evenly divide n_threads did not warrant such aggressive enforcement
* lower synchronization overhead
* statically allocate
* move numa state to g_state
* add description for --numa
* ggml : minor style changes
* ggml : minor style + try fix sanitizer build
* llama : allow to initialize backend with NUMA support
* llama : avoid ggml include in llama-util.h
* ggml : style / formatting
* ggml : fix handling of ops with n_threads > n_tasks > 1
* server : utilize numa parameter
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : make model stateless and context stateful
* llama : minor cleanup
* llama : update internal API declaration
* Apply suggestions from code review
fix style
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Missing model memory release
* Fix style
* Add deprecated warning for public API function llama_init_from_file
* Update public API use cases: move away from deprecated llama_init_from_file
* Deprecate public API function llama_apply_lora_from_file
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
Small, non-functional changes were made to non-compliant files.
These include breaking up long lines, whitespace sanitation and
unused import removal.
Maximum line length in python files was set to a generous 125 chars,
in order to minimize number of changes needed in scripts and general
annoyance. The "txt" prompts directory is excluded from the checks
as it may contain oddly formatted files and strings for a good reason.
Signed-off-by: Jiri Podivin <jpodivin@gmail.com>
* Update baby-llama.cpp
Seems to be an error in the implementation of the operator!= function. It attempts to compare the this pointer (a llama_hparams_lora object) with the other pointer (a llama_hparams object) using memcmp. This can lead to incorrect results because the sizes of the objects being compared (sizeof(llama_hparams) and sizeof(llama_hparams_lora)) are different, should now be able to compare two llama_hparams_lora objects for inequality.
* Update baby-llama.cpp
* Update baby-llama.cpp
* add python wrapper
https://gist.github.com/abetlen/2b90e5f153f6efd00931d098de5c73ce
* fix decoding error. adds errors=ignore parameter
* add python bindings for functions to get and set the whole llama state
(rng, logits, embedding and kv_cache)
* update python bindings
* add text generating baby-llama from scratch example
* fix race condition bug in ggml_compute_forward_diag_mask_f32
* implement ggml_soft_max_back for more performant backward pass of soft_max
avoids creating big intermediate matrices of size n_embd x n_embd for llama layers and n_vocab x n_vocab for cross entropy loss
* improve softmax backward pass
go from quadratic runtime to linear runtime by simplifying the formulas
* fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32
memcpy needs to be synchronized across threads to avoid race conditions.
=> do it in INIT phase
* fix bug in ggml_compute_forward_soft_max_back_f32 on DEBUG build
* improve performance of mul_mat backward pass
avoid transpose by using mul_mat with swapped arguments
* avoid printing too much newlines in baby-llama-text
* activate threading in baby-llama-text
* add ggml_out_prod and use it for mul_mat backward pass for improved performance
performance stats report improvement from 37 seconds to 16 seconds runtime during my training tests
* better weight initialization improves training convergence at start
* better weight initialization improves training convergence at start
* improve ggml_out_prod performance
- change iteration order (>15s -> 10s runtime)
- parallelize over one more dimension: over dst matrix rows (10s -> <5s runtime)
* add llama sampler, shuffle samples and constrain sampling to tokens occurring in train data
* fix get_samples call, add model tensor names, increase model size, start training samples after newline
* save train trained model to checkpoint and load model to be trained from checkpoint
* use inplace functions where possible
* initialize rng with srand
* use different arguments for input and output checkpoint
* ggml fixes to support backward pass on inplace operations
* remove duplicate include
* fix cross entropy loss
- add target probabilities for each sample which is then used in cross entropy loss
* print used memory before and after optimization
* sample with non-greedy sampling parameters at the end of training
* add cmake target for baby-llama-text
* add ggml_add1_inplace to header
* enable gradient propagation for inplace add1 and scale operations
those functions backward passes don't need the original src0, so they also work when forward is inplace
* implement AdamW in ggml_opt_adam by adding weight decay parameter (default 0.001f)
also add a schedule parameter (default 1.0f) that can be used to scale alpha and decay according to learning schedule.
setting the decay parameter to zero disables AdamW resulting in normal Adam optimizer.
since the difference between Adam and AdamW is minimal it is not implemented as another optimizer, but integrated into the existing Adam optimizer.
* use inplace operations in cross_entropy_loss
* fix random weight initialization scale
* add missing default parameters for adam optimizer
* add ggml_opt_context, so that we can properly resume training
otherwise the optimizer states, tracking statistics about the error function and its derivates,
will reset to zero each time ggml_opt is called, hindering convergence on resumed training.
now the optimizer context and all its memory is stored in a separate struct.
* fix bug in llama_sample_token_mirostat_v2
when all candidates are filtered out through mu threshold, the following soft_max operation will fail.
so keep at least one.
* add forward function without using cache, for more performant training
during training on whole samples no cache is required.
removing the cache and simplifying the remaining code results in performance and memory usage improvement.
* print suppressed newline tokens as string "\n"
printing too much actual newlines is suppressed to avoid flooding the console.
* store optimizer state in training checkpoint and add learning schedule
persistent optimizer state allows to resume training without resetting the optimizer
learning schedule consists of linear warmup ramp followed by cosine decay with restarts
* remove unused functions
* fix bug in get_samples which corrupted training targets
* save checkpoint only when it was trained
* simplify code
* remove trailing whitespace
* simplify backward pass for SQRT
* replace inefficient repeat backward pass with dedicated repeat_back operation
* add ggml_cross_entropy_loss with backward pass for faster training
cross entropy loss can also be implemented using softmax and log, but as dedicated operation it is faster and especially avoids unnecessary memory overhead.
* add tests for cross_entropy_loss backward pass
finite differences regularly results in estimated gradient of zero, despite the backward pass giving non zero gradient.
_probably_ the finite differences fails due to numerical issues
* use ggml_cross_entropy_loss in text training example
* remove trailing whitespace
* slightly improve how cross entropy loss is compute
btw: directly implemented cross entropy loss seems to have way lower magnitudes than when implemented with softmax and log.
probably the input to log gets closer to zero due to float numerics.
maybe the multiplication by (1.0-eps)/sum is more accurate..
* add llama_get_vocab to get the vocabulary as output parameters
* set default model.type for unknown models with few layers
* add export of training checkpoint to llama compatible model file
* get vocabulary for exporting training checkpoint to llama compatible model file
* implement backward pass of flash attention
* bugfixes for backward pass of flash attention
* test flash attention backward pass
need to set loose error bounds to pass.
the finitie differences are close to numeric limits and often return quite different values than the backward pass.
reducing eps further lets the gradients vanish completely.
likewise setting eps to big results in wronger values.
the softmax in the middle of the function is probably the most responsible for the numeric issues using finite differences.
* add option to train with flash attention and move options to the top of the main function
training from scratch also works with flash attention
training convergence and generation results after fix number of iterations are worse than when not using flash attention.
maybe there still lingers a bug in the flash attention backward pass?
but training works, just with slower convergence.
flash attention is still worth to use, because it requires way less memory and is faster with high n_ctx
* add train_params and command line option parser
* remove unnecessary comments
* add train params to specify memory size
* remove python bindings
* rename baby-llama-text to train-text-from-scratch
* replace auto parameters in lambda function
* add #include <climits>
* add explicit cast to fix compile error
"error: non-constant-expression cannot be narrowed from type 'int64_t' (aka 'long long') to 'uint32_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]"
* remove trailing whitespace
* add ggml_opt_resume_g which accepts forward and backward cgraphs
* fix formulas in comments
* bug fix for ggml_compute_forward_get_rows_back_f32
the result should be set to zero, not to whatever data is in opt0
* improve training memory usage with scratch buffers
instead of relying on the automatic backward pass, we manually create the graph for the backward pass.
it turns out that all backward pass operations need only temporary memory which can be reused after each layer.
will compute backward pass for ALL model parameters
* add option to use scratch buffers in training or not
make it configurable because currently training with scratch buffers implies flash attention and optimization over all parameters.
* ci : disable temporary
* store view offset and permute axes in opt[0] instead of storing it in padding
use memcpy to store offset, because offset is of type size_t.
when storing it as int32_t offset would have to be smaller than 2^31 which is not necessarily true.
* minor : fix compile warnings + minor style changes
* fix bug in threaded indices calculation of ggml_compute_forward_flash_attn_back_f32
* store view offset like in master branch
* bug fix in forward_batch_wo_cache_flash_attn_train
* scratch buffer bug fixes in forward_batch_wo_cache_flash_attn_train
data of permute and reshape is the same as their input.
if we want to preserve the output of permute/reshape, we also need to preserve their inputs.
replace reshape(src0, src1) with reshape_nd calls so that we don't need src1.
replace (temporary) t03 with ggml_repeat(ctx0, layer.attention_norm, t02).
in the future we could also use the new broadcasting ggml_mul to avoid these repeat calls.
for this we need backward pass of broadcasting ggml_mul.
* remove unnecessary scratch buffer 0
buf 0 is persistent memory, so we can just disable scratch for this by using buf -1
* avoid creating unnecessary grad tensors
previously we need to create grads for model parameters, so that expand(..) correctly populates cgraph->leafs & cgraph->grads
this wasted memory, because unnecessary grad for each op were automatically created:
the automatically generated grad was unnecessary because we later manually set the grad (e.g. t35->grad = expand(gb, ...) ).
this discarded the automatically generated grad resulting in wasted memory.
improved this by changing expand(..) to not use ggml_build_forward_expand.
expand set cgraph->nodes but not the leafs.
cgraph->leafs & cgraph->grads are set in another pass after the last expand call.
* print used training seed
* zero initialize gfbuf and gbbuf
* ci : re-enable workflows + add README for training
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Allow "quantizing" to f16 and f32
Fix an issue where quantizing didn't respect LLAMA_NO_K_QUANTS
Add brief help to the list of quantization types in the quantize tool
Ignore case for quantization type arguments in the quantize tool
* Fix issue where interactive mode in the main example crashes when input exceeds ctx size
* Ensure the context size is at least 8 tokens in the main example.
Closes#1768
* Add support for quantizing already quantized models
* Threaded dequantizing and f16 to f32 conversion
* Clean up thread blocks with spares calculation a bit
* Use std::runtime_error exceptions.
The prompt cache constitutes a nice speed up when using the same prompt
prefix across multiple evaluations, but when using it, it will also be
updated, which is not always desirable. One use case is to have a large
prompt containing some context and usage rules, and a second part
containing variable data of the problem being studied. In this case it's
desirable to be able to save the first part once, and to always reuse it
as-is without updating it with the second part.
The new argument --prompt-cache-ro enables this read-only mode on the
prompt cache. The prompt's contents that match the cache are loaded
from the cache but the rest is not modified. This allowed to reduce a
total analysis time from 112s to 49.7s here, without having to backup
and restore a copy of the prompt, which takes significant time at 500
MB.
Signed-off-by: Willy Tarreau <w@1wt.eu>
* Starting to add k-quantization to ggml
I think it is better to have quantization separate from
ggml. For now just adding the k-quants there, but it would be
better to also factor out the existing ggml quantizations.
* Adding Q3_K and Q8_K (de)-quantization
* Q3_K now working on CUDA and AVX2/scalar
CUDA is not ideal - ~50% slower than Q4_0 for
single token prediction, about the same in batch
mode (perplexity). CPU single token is ~55 ms
(on Ryzen 7950X).
* Some improvement for Q3_K on CUDA
It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0.
* Some more CUDA optimizations for Q3_K
Single token is now 20.5 ms/token (~20% slower than Q4_0).
Perplexity is on par with Q4_0.
* Adding Q4_K - scalar, AVX2, CUDA
Performance is the same or perhaps very slightly better than Q4_0 on the CPU.
On the GPU, single token prediction is ~10% better than Q4_0,
batch mode (perplexity is about the same).
* Adding Q6_K - scalar, AVX2, CUDA
Performance is ~40% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 6-bit model is ~44% larger than the 4-bit.
On the GPU, single token prediction is ~6% lower than Q4_0,
batch mode (perplexity) is even closer (but still slower).
* Adding Q5_K - scalar, AVX2, CUDA
Performance is ~20% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 5-bit model is ~22% larger than the 4-bit.
On the GPU, single token prediction is about the same as Q4_0
for both, single token and batch prediction.
* Per convention, all QX_K quantizations use Q5_K for output.weight
* Adding quantization mixes
* Quantization mixes: didn't quite get what I wanted in the last commit
* Q4_K dot product for ARM_NEON
* Q6_K dot product for ARM_NEON
* Q5_K dot product for ARM_NEON
* Adding Q3_K dot for ARM_NEON
It is 22% slower than Q4_K, despite the smaller model size.
On x86_64, where we are memory bound, the Q3_K model is
quite a bit faster than Q4_K.
* A very slightly faster ARM_NEON Q3_K dot
* Adding Q2_K - just CUDA for now
Token prediction is pretty good - about 15.5 ms on a RTX 4080.
Perplexity is about the same as Q4_K.
* Adding scalar and AVX2 Q2_K dot
* Adding ARM_NEON Q2_K dot
About the same performance as Q4_K.
* A slightly faster ARM_NEON Q2_K dot
Single token prediction is now ~36 ms on M2 Max.
The code is much simpler too.
* Fixed bug in Q2_K CUDA dot product kernel
Stranegly enough, for the few prompts I tried with the 7B model
the responses looked perfectly reasonable. Only realized something
is not quite right when I tried the larger models and started getting
nonse back.
In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X
box iusing CUDA and model fully loaded on the GPU are
~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B.
The max number of layers that fit in VRAM for The 65B is 32.
With that, we get ~330 ms per token, which is not that much faster
than just running on the CPU (~470 ms per token).
* Don't print zeros/NaNs when no count histogram has been collected
* A 10% faster CUDA vector dot kernel for Q3_K
Q3_K is now running at ~18.5 ms / token on CUDA,
so the gap to Q4_0 is only 10%.
It seems memory acccess pattern is more important for
performance than the amount of computation the kernel
does.
* A slightly daster Q4_K AVX2 dot product
For perplexity, where we are less memory bound, time per
pass drops by ~5%. Barely measurable difference for single
token prediction.
* A slightly faster ARM_NEON A4_K dot product
* Minor
* Fix quantization error test
We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit
quantization variants.
* Fix docker build
I have been sloppy with vector reinterpret casts on ARM_NEON.
It seems clang is very forgiving in that regard.
* Added forgotten ggml.o dependence on k_quants.h to the Makefile
* Had unintentionally committed the Makefile with -Ofast enabled
* ggml : rename k_quants -> ggml-quants-k, use lowercase in code
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* mtl : export the LLaMA computation graph
* ci : disable temporary
* mtl : adapt the MNIST example as starter
* mtl : no need for mtl-export tool, add cli arg for main instead
* mtl : export just a small part of the graph for now to make it easier
* mtl : move MSL code into separate file for easy editing
* mtl : initial get_rows_q4_0 kernel
* mtl : confirmed get_rows_q4_0 is working correctly
* mtl : add rms_norm kernel + confirm working
* mtl : add mul kernel + confirm working
* mtl : initial mul_mat Q4 kernel (wrong results)
* mtl : mul_mat fixes (still wrong)
* mtl : another mul_mat Q4 (still does not work)
* mtl : working mul_mat q4
* ggml : fix handling of "view" ops in ggml_graph_import()
* mtl : add rope kernel
* mtl : add reshape and transpose handling
* ggml : store offset as opt arg for ggml_view_xd() operators
* mtl : add cpy kernel + handle view ops
* mtl : confirm f16 x f32 attention mul mat
* mtl : add scale kernel
* mtl : add diag_mask_inf kernel
* mtl : fix soft_max kernel
* ggml : update ggml_nbytes() to handle non-contiguous tensors
* mtl : verify V tensor contents
* mtl : add f32 -> f32 cpy kernel
* mtl : add silu kernel
* mtl : add non-broadcast mul kernel
* mtl : full GPU inference of the computation graph
* mtl : optimize rms_norm and soft_max kernels
* mtl : add f16 mat x f32 vec multiplication kernel
* mtl : fix bug in f16 x f32 mul mat + speed-up computation
* mtl : faster mul_mat_q4_0_f32 kernel
* mtl : fix kernel signature + roll inner loop
* mtl : more threads for rms_norm + better timing
* mtl : remove printfs from inner loop
* mtl : simplify implementation
* mtl : add save/load vocab to ggml file
* mtl : plug Metal inference into llama.cpp (very quick-n-dirty)
* mtl : make it work with main example
Lots of hacks but at least now it generates text
* mtl : preparing for merge
* mtl : clean-up ggml mtl interface + suport scratch / inplace
* mtl : remove temp / debug code
* metal : final refactoring and simplification
* Revert "ci : disable temporary"
This reverts commit 98c267fc77.
* metal : add comments
* metal : clean-up stuff, fix typos
* readme : add Metal instructions
* readme : add example for main
1. Add a `LLAMA_SUPPORTS_GPU_OFFLOAD` define to `llama.h` (defined when compiled with CLBlast or cuBLAS)
2. Update the argument handling in the common example code to only show the `-ngl`, `--n-gpu-layers` option when GPU offload is possible.
3. Add an entry for the `-ngl`, `--n-gpu-layers` option to the `main` and `server` examples documentation
4. Update `main` and `server` examples documentation to use the new style dash separator argument format
5. Update the `server` example to use dash separators for its arguments and adds `-ngl` to `--help` (only shown when compiled with appropriate support). It will still support `--memory_f32` and `--ctx_size` for compatibility.
6. Add a warning discouraging use of `--memory-f32` for the `main` and `server` examples `--help` text as well as documentation. Rationale: https://github.com/ggerganov/llama.cpp/discussions/1593#discussioncomment-6004356
Set `LLAMA_BUILD_SERVER` in workflow so the `server` example gets build. This currently only applies to Windows builds because it seems like only Windows binary artifacts are included in releases.
Add `server` example target to `Makefile` (still uses `LLAMA_BUILD_SERVER` define and does not build by default)
Fix issue where `vdot` binary wasn't removed when running `make clean`.
Fix compile warnings in `server` example.
Add `.hpp` files to trigger workflow (the server example has one).
Improvements to loading the session with `--prompt-cache` in the `main` example.
1. Fix an issue where the `--seed` parameter was ignored when loading a cached prompt.
2. When loading a cached prompt, you previously had to specify the saved prompt (or a prefix of it) again. This pull changes that behavior to default to the prompt that was cached if a prompt wasn't specified by the user.
* Added httplib support
* Added readme for server example
* fixed some bugs
* Fix the build error on Macbook
* changed json11 to nlohmann-json
* removed some whitespaces
* remove trailing whitespace
* added support custom prompts and more functions
* some corrections and added as cmake option
* Make reverse prompt option act as a stop token in non-interactive scenarios
* Making requested review changes
* Update gpt_params_parse and fix a merge error
* Revert "Update gpt_params_parse and fix a merge error"
This reverts commit 2bb2ff1748.
* Update gpt_params_parse and fix a merge error take 2
* fix get_num_physical_cores()
had been broken on complex topologies because "cpu cores" in /proc/cpuinfo is per-"physical id"
* Add spaces to maintain consistent formatting
---------
Co-authored-by: slaren <ddevesa@gmail.com>
* implement 8 of 14 missing backward pass operations used by llama
- GGML_OP_ADD_AT
- GGML_OP_CPY
- GGML_OP_MUL_MAT (src0.grad)
- GGML_OP_PERMUTE
- GGML_OP_RESHAPE
- GGML_OP_SCALE
- GGML_OP_TRANSPOSE
- GGML_OP_VIEW
implement additional ggml operation GGML_OP_ADD_AT, which is necessary for backward pass of GGML_OP_VIEW.
this operation adds src1 to src0 with data offset, i.e. to view(src0, ..., offset).
the values are return in a tensor size of src0. values outside of [data+offset:data+offset+nbytes(src1)] are just the original values from src0.
still missing backward passes for llama:
- GGML_OP_DIAG_MASK_INF
- GGML_OP_GET_ROWS
- GGML_OP_RMS_NORM
- GGML_OP_ROPE
- GGML_OP_SILU
- GGML_OP_SOFT_MAX
* implement 5 of 6 missing backward pass operations used by llama
- GGML_OP_DIAG_MASK_INF
- GGML_OP_GET_ROWS
- GGML_OP_RMS_NORM
- GGML_OP_SILU
- GGML_OP_SOFT_MAX
add necessary ggml operations GGML_OP_ADD1, GGML_OP_SILU_BACK, GGML_OP_RMS_NORM_BACK, GGML_OP_DIAG_MASK_ZERO, and GGML_OP_ROPE_BACK
GGML_OP_ADD1 is necessary to add a scalar value in the backward pass of GGML_OP_SOFT_MAX
GGML_OP_ADD1 could also be replaced by using GGML_OP_ADD and GGML_OP_REPEAT, but the performance would be worse. additionally GGML_OP_REPEAT will return unexpected value when the the input to GGML_OP_SOFT_MAX contains only a single scalar. in this case GGML_OP_REPEAT will not return the value that should be repeated (src1) but the value which shape the result should take (src0). So in this case it can not replace GGML_OP_ADD1.
GGML_OP_SILU_BACK, GGML_OP_RMS_NORM_BACK and GGML_OP_ROPE_BACK are necessary for backward pass of GGML_OP_SILU, GGML_OP_RMS_NORM and GGML_OP_ROPE. The backward pass for these functions cannot be easily composed of existing operations. Since the backward pass builds a computation graph we need operations forward pass implementations of the the required backward passes. Sounds a bit confusing at first, I know...
GGML_OP_DIAG_MASK_ZERO is necessary for backward pass of GGML_OP_DIAG_MASK_INF.
Some operations where previously inplace-only. for backward pass there needs to be non-inplace variants.
staying consistent with other operations that have non-inplace and inplace variants, the operations are changed to non-inplace and
functions with "_inplace" are added which are inplace.
in llama we need to call the inplace variants so that it is implemented as before.
for llama backward pass we need to use the non-inplace variants.
still not completely implemented backward passes for llama:
- GGML_OP_ROPE: needs forward pass for GGML_OP_ROPE_BACK
- GGML_OP_GET_ROWS: only necessary for tokenizer
* norm & rms_norm can not be threaded:
after investigation rms norm for quite some time I come to the conclusion that neither norm, nor rms_norm can be threaded, because we need mean over all items, not just of the slices each thread sees.
* remove already resolved TODO
* implement backward pass of ggml_rope and ggml_rope_back
* implement backward pass for ggml_get_rows and for new operation ggml_get_rows_back
* add test-grad0.c
* use GGML_PRINT_DEBUG for debug messages which will otherwise flood the console
* test both gradients of mul_mat
* disable graph dot export as it floods console
* bug fixes for silu_back
* successfully test silu backward
* bug fix for scale backward pass
use sum instead of mean for gradient of scalar scale parameter
* successfully test scale backward
* improve performance of sum backward pass
use add1(x,y) instead of add(x,repeat(y,x))
* improve performance of sqr backward pass
use scale(x,y) instead of mul(x,repeat(y,x))
* successfully test rope backward
* bug fix for cpy backward pass
* successfully test cpy backward
* bug fix for reshape backward pass
* successfully test reshape backward
* add test-opt.c
this uses ggml_opt to train a,b for minimal e=sum(sqr(c - a*b)) for random initial a,b,c
* correctly implement softmax backward pass using new operation ggml_diag
ggml_diag constructs diagonal matrices with entries.
ggml_diag(shape[a,1,c,d]) -> shape[a,a,c,d]
* successfully test soft_max backward
* align shape annotations
* add shape annotations for llama
* de-duplicate ggml_forward_dup code taking care of contiguous tensors of same type.
with this we can duplicate tensor of any typ as long as they are contiguous.
* fix ggml_compute_forward_dup_same_cont for when nelements < nthreads
when more threads are used than elements exist ie1 was less than ie0, resulting in invalid negative byte count argument in memcpy
* bug fix for add_at forward
required for view backward pass
src0 values must be copied to dst, because during addition we don't touch all dst elements in contrast to the normal add function.
* successfully test view backward
* minor code format improvement
* fix ggml_forward_add functions to work correctly with transposed tensors
uses the same logic as in ggml_compute_forward_add_q_f32, but make it consistent across all ggml_compute_forward_add_... functions.
this also slightly changes the mem access pattern of the different threads to works as in ggml_compute_forward_add_q_f32.
* fix ggml_forward_add1 functions to work correctly with transposed tensors
uses the same logic as in ggml_compute_forward_add1_q_f32, but make it consistent across all ggml_compute_forward_add1_... functions.
this also slightly changes the mem access pattern of the different threads to works as in ggml_compute_forward_add1_q_f32.
* test-grad0.c : add print_elements to help with debugging
* successfully test permute backward
* some minor test-grad0 fixes
* fix sub, mul and div functions to work correctly with transposed tensors
uses the same logic as in add
* implement ggml_cont backward pass
* successfully test transpose backward and permute for all permutations
also test sub, mul and div up to max n_dims
* test-grad0.c add TODO for view_2d and view_3d
add_at (required for view backward pass) is a bit tricky for n_dims > 1.
* fix comments
* successfully test diag_mask_inf and diag_mask_zero backward
* test-grad0 : fix test for div
nargs and ndims was swapped, corrupting the stack
* fix diag_mask to work with non-inplace input
* move dup call into the actual add_at functions
* fix get rows backward pass
* successfully test get_rows backward
* fix view backward pass
add nb parameters to add_at like in view.
together with offset they define how to view dst and src0 during the add_at operation.
* successfully test backward pass of view_1d, view_2d and view_3d
* fix backward pass for rms_norm
I would have used formulas from other frameworks, but they differed so I could not decide which is correct.
Instead it was derived here in comment using manual forward-backward automatic differention of rms_norm and simplification.
* successfully test backward pass of rms_norm
some tests may fail when gradients are large.
could not find a satisfying configuration to check for abs error and relative error that passes all tests while still actually testing the results with tight enough error bounds.
when looking at the values the "failed" tests look actually ok. for example:
rms_norm: ndims=2, i=0, k=2, x0=0.000153, xm=0.000053, xp=0.000253, f0=0.278594, f1=0.086213, g0=961.905457, g1=966.064941, eps=0.000100, error_abs=4.159485, error_rel=0.004324
it is due to the test logic in check_gradients that they fail.
* add todos for llama backward pass
- implementation for ADD1 backward pass should probably use sum instead of mean (but this backward pass is not required)
- repeat is not yet tested and looks like it only works for single element src0 inputs.
* add operation ggml_sum_rows
ggml_sum_rows(shape[a,b,c,d]) -> shape[1,b,c,d]
* add missing GGML_OP_SUM_ROWS
* fix backward pass for repeat
requires ggml_sum_rows
* successfully test backward pass of repeat
* update quantization types in switch-case of add_at and add1
* add baby-llama example training a very small llama model from scratch to output a sinusoidal wave.
had to increase maximum number of optimization parameters to train from scratch.
* fix softmax in baby-llama example
* switching from training with adam to lbfgs produces much better results in the baby-llama example
* train with two examples, creating new tensors each time..
* fix bug when using ggml_opt to optimize params in one context and use a renewable context for eval and opt
when not keeping gradients of model parameters they are overwritten by tensors created by opt, which may be invalid after opt context is renewed.
so we need to keep the original gradients and make dups for opt
* train on multiple examples, generate & print tokens with trained model afterwards
ctx0 for evaluation and optimization is renewed for each sample
* add ggml_reshape_1d, ggml_reshape_4d and ggml_view_4d
* fix soft_max backward pass for input->ne[1] != 1
* add ggml_log operation necessary for cross entropy loss
* add test for ggml_log gradients
* implement backward pass for ggml_sum_rows, necessary for cross entropy loss
* implement ggml_repeat support for rank > 2 tensors
* add test for ggml_sum_rows gradients
* fix training get_example_targets
predict the next token, not the current token!
* add square_error_loss and cross_entropy_loss functions
* optimize loss over multiple samples
this increases computation graph, need parallel batched forward for more efficiency.
* fix backward pass for add_at and change arguments to have same order as in view
* add ggml_set(ctx, a, b) to set b in view of a and return modified a
necessary to set values into kv_self cache and properly propagate the gradients
* fix kv_self gradients for training
use ggml_set instead of ggml_cpy to set kv_self cache with properly propagating gradients
* replace inplace operations for training with copying operations to allow gradient propagation
* add GGML_ASSERT to catch ggml_rope and back value errors
* add trainable lora-only model with all big matrices C split into A,B with A*B=C
this is not a lora-finetune, but the whole model changed to have only low-rank "lora" matrices.
training this instead of the normal model resulted in much worse results though...
* vastly improve training results
instead of logit targets 0 and 1 use -1 and +1.
* shorten code using a variable
* change name of GGML_OP_ADD_AT to GGML_OP_ACC
* smaller default values for baby llama model parameters
* update static assert of GGML_OP_COUNT
* remove shape annotations in llama_eval_internal
* revert disabling of threading for rms_norm and norm
* rename print functions in baby-llama example
* fix call to ggml_set_name
* add missing include for strcmp, etc
* remove trailing whitespace
* reduce number of test-grad0 iterations
avoid exceeding timeout of automated tests
* remove busy loop that was used as sleep for slower sinus wave generation
* disable slow tests grad0 and opt to avoid exceeding timeouts
* c++ in baby-llama example
use c++ includes instead of c includes
use std::min, std::max instead of MIN, MAX macros
* c++ in baby-llama example
use c++ includes instead of c includes
use std::min, std::max instead of MIN, MAX macros
* ggml : fix compiler warnings + cosmetic changes
* ggml : fix nullptr derefs in GGML_OP_CONT and GGML_OP_RESHAPE back
* swap arguments to vDSP_vdiv call
documentation for vDSP_vdiv states: "Note that B comes before A!"
* swap arguments to vDSP_vdiv call
documentation for vDSP_vdiv states: "Note that B comes before A!"
* ggml : swap vDSP_vsub args as per documentation
* add parallel batched forward function for baby-llama training
* cleanup code for batched training
* remove trailing whitespace
* minor : fix compiler warnings + indentation style
* ggml : fix null ptr deref in backward pass
* ggml : remove Q4_2 remnants
* ggml : fix clang-tidy warnings
* baby-llama : couple of clang-tidy warnings
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* main : add option to save full output to session
* split behavior into --session and --prompt-cache
* restore original implementation with new names
* PR comments
* move the check for incompatible parameters to gpt_params_parse
* Fix whitespace
Co-authored-by: DannyDaemonic <DannyDaemonic@gmail.com>
---------
Co-authored-by: DannyDaemonic <DannyDaemonic@gmail.com>
* fix reverse prompt and multi line
* Code Formatting
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>